Loading…

Micro-simulation model of two-lane freeway vehicles for obtaining traffic flow characteristics including safety condition

Unidirectional two-lane freeway is a typical and the simplest form of freeway. The traffic flow char- acteristics including safety condition on two-lane freeway is of great significance in planning, design, and manage- ment of a freeway. Many previous traffic flow models are able to figure out flow...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern transportation 2016-09, Vol.24 (3), p.187-195
Main Authors: Yue, Yang, Luo, Sida, Luo, Tianming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Unidirectional two-lane freeway is a typical and the simplest form of freeway. The traffic flow char- acteristics including safety condition on two-lane freeway is of great significance in planning, design, and manage- ment of a freeway. Many previous traffic flow models are able to figure out flow characteristics such as speed, den- sity, delay, and so forth. These models, however, have great difficulty in reflecting safety condition of vehicles. Besides, for the cellular automation, one of the most widely used microscopic traffic simulation models, its discreteness in both time and space can possibly cause inaccuracy or big errors in simulation results. In this paper, a micro-simula- tion model of two-lane freeway vehicles is proposed to evaluate characteristics of traffic flow, including safety condition. The model is also discrete in time but continu- ous in space, and it divides drivers into several groups on the basis of their preferences for overtaking, which makes the simulation more aligned with real situations. Partial test is conducted in this study and results of delay, speed, volume, and density indicate the preliminary validity of our model, based on which the proposed safety coefficient evaluates safety condition under different flow levels. It is found that the results of this evaluation coincide with daily experience of drivers, providing ground for effectiveness of the safety coefficient.
ISSN:2095-087X
2662-4745
2196-0577
2662-4753
DOI:10.1007/s40534-016-0103-9