Loading…
Nanoindentation Creep, Nano-Impact, and Thermal Properties of Multiwall Carbon Nanotubes-Polypropylene Nanocomposites Prepared via Melt Blending
Morphological analysis of the nanocomposites showed that multi-wall carbon nanotubes were uniformly distributed in polypropylene. Nanoindentation creep and nano-impact tests were carried out. Several equations/models were used to analyze creep data. From creep test, hardness of the nanocomposites in...
Saved in:
Published in: | Polymer-plastics technology and engineering 2016-09, Vol.55 (13), p.1373-1385 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Morphological analysis of the nanocomposites showed that multi-wall carbon nanotubes were uniformly distributed in polypropylene. Nanoindentation creep and nano-impact tests were carried out. Several equations/models were used to analyze creep data. From creep test, hardness of the nanocomposites increased by 18 and 36% for C150P and C70P, respectively, compared to polypropylene, whereas elasticity also increased by 20 and 34%. From nano-impact test, hardness of the nanocomposites was also higher than that of neat polypropylene. However, hardness (dynamic/impact) values were slightly higher than the (quasi-static) hardness resulted from creep test. In addition, degree of crystallinity of nanocomposites also increased by 12.6 and 14.3%. |
---|---|
ISSN: | 0360-2559 1525-6111 |
DOI: | 10.1080/03602559.2016.1163582 |