Loading…

Multi-period portfolio optimization under probabilistic risk measure

•Our paper provides a computationally simple analytical solution to the complex portfolio selection problem in a multi-period setting.•Probabilistic risk measure can cater for investors with different degree of risk aversion.•In our settings, the investors do not have to purchase a huge number of st...

Full description

Saved in:
Bibliographic Details
Published in:Finance research letters 2016-08, Vol.18, p.60-66
Main Authors: Sun, Yufei, Aw, Grace, Teo, Kok Lay, Zhu, Yanjian, Wang, Xiangyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-2c12c8a85abcb75f844606b532056c8f0dc95be4c411e174d0da8d033d2df1ac3
cites cdi_FETCH-LOGICAL-c356t-2c12c8a85abcb75f844606b532056c8f0dc95be4c411e174d0da8d033d2df1ac3
container_end_page 66
container_issue
container_start_page 60
container_title Finance research letters
container_volume 18
creator Sun, Yufei
Aw, Grace
Teo, Kok Lay
Zhu, Yanjian
Wang, Xiangyu
description •Our paper provides a computationally simple analytical solution to the complex portfolio selection problem in a multi-period setting.•Probabilistic risk measure can cater for investors with different degree of risk aversion.•In our settings, the investors do not have to purchase a huge number of stocks to form an optimal portfolio.•Our model is superior over its corresponding single period one, as well as over the market index. This paper develops a minimax model for a multi-period portfolio selection problem. An analytical solution is obtained and numerical simulations demonstrate the superiority of the multi-period model over its corresponding single period one, as well as over the market index.
doi_str_mv 10.1016/j.frl.2016.04.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1819909406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1544612316300423</els_id><sourcerecordid>4183580471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-2c12c8a85abcb75f844606b532056c8f0dc95be4c411e174d0da8d033d2df1ac3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG8Fz63vpWna4knWv7DiRc8hTVJI7TY1SQX99EZWPHp6c5iZN_wIOUcoEJBfDkXvx4ImWQArAPCArLBiLOdY4uGfpuUxOQlhAKB1U_MVuXlaxmjz2XjrdDY7H3s3Wpe5Odqd_ZLRuilbJm18NnvXyc6ONkSrMm_DW7YzMizenJKjXo7BnP3eNXm9u33ZPOTb5_vHzfU2V2XFY04VUtXIppKd6uqqbxjjwLuqpFBx1fSgVVt1himGaLBmGrRsNJSlprpHqco1udj3pinviwlRDG7xU3opsMG2hZYBTy7cu5R3IXjTi9nbnfSfAkH8wBKDSLDEDywBTCRYKXO1z5g0_8MaL4KyZlJGW29UFNrZf9LfPMByzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819909406</pqid></control><display><type>article</type><title>Multi-period portfolio optimization under probabilistic risk measure</title><source>ScienceDirect Freedom Collection</source><creator>Sun, Yufei ; Aw, Grace ; Teo, Kok Lay ; Zhu, Yanjian ; Wang, Xiangyu</creator><creatorcontrib>Sun, Yufei ; Aw, Grace ; Teo, Kok Lay ; Zhu, Yanjian ; Wang, Xiangyu</creatorcontrib><description>•Our paper provides a computationally simple analytical solution to the complex portfolio selection problem in a multi-period setting.•Probabilistic risk measure can cater for investors with different degree of risk aversion.•In our settings, the investors do not have to purchase a huge number of stocks to form an optimal portfolio.•Our model is superior over its corresponding single period one, as well as over the market index. This paper develops a minimax model for a multi-period portfolio selection problem. An analytical solution is obtained and numerical simulations demonstrate the superiority of the multi-period model over its corresponding single period one, as well as over the market index.</description><identifier>ISSN: 1544-6123</identifier><identifier>EISSN: 1544-6131</identifier><identifier>DOI: 10.1016/j.frl.2016.04.001</identifier><language>eng</language><publisher>San Diego: Elsevier Inc</publisher><subject>Decision making models ; Discrete-time optimal control ; Dynamic programming ; Investment policy ; Numerical analysis ; Portfolio investments ; Portfolio optimization ; Probability risk measure ; Risk assessment ; Simulation ; Studies</subject><ispartof>Finance research letters, 2016-08, Vol.18, p.60-66</ispartof><rights>2016</rights><rights>Copyright Academic Press Aug 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-2c12c8a85abcb75f844606b532056c8f0dc95be4c411e174d0da8d033d2df1ac3</citedby><cites>FETCH-LOGICAL-c356t-2c12c8a85abcb75f844606b532056c8f0dc95be4c411e174d0da8d033d2df1ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sun, Yufei</creatorcontrib><creatorcontrib>Aw, Grace</creatorcontrib><creatorcontrib>Teo, Kok Lay</creatorcontrib><creatorcontrib>Zhu, Yanjian</creatorcontrib><creatorcontrib>Wang, Xiangyu</creatorcontrib><title>Multi-period portfolio optimization under probabilistic risk measure</title><title>Finance research letters</title><description>•Our paper provides a computationally simple analytical solution to the complex portfolio selection problem in a multi-period setting.•Probabilistic risk measure can cater for investors with different degree of risk aversion.•In our settings, the investors do not have to purchase a huge number of stocks to form an optimal portfolio.•Our model is superior over its corresponding single period one, as well as over the market index. This paper develops a minimax model for a multi-period portfolio selection problem. An analytical solution is obtained and numerical simulations demonstrate the superiority of the multi-period model over its corresponding single period one, as well as over the market index.</description><subject>Decision making models</subject><subject>Discrete-time optimal control</subject><subject>Dynamic programming</subject><subject>Investment policy</subject><subject>Numerical analysis</subject><subject>Portfolio investments</subject><subject>Portfolio optimization</subject><subject>Probability risk measure</subject><subject>Risk assessment</subject><subject>Simulation</subject><subject>Studies</subject><issn>1544-6123</issn><issn>1544-6131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG8Fz63vpWna4knWv7DiRc8hTVJI7TY1SQX99EZWPHp6c5iZN_wIOUcoEJBfDkXvx4ImWQArAPCArLBiLOdY4uGfpuUxOQlhAKB1U_MVuXlaxmjz2XjrdDY7H3s3Wpe5Odqd_ZLRuilbJm18NnvXyc6ONkSrMm_DW7YzMizenJKjXo7BnP3eNXm9u33ZPOTb5_vHzfU2V2XFY04VUtXIppKd6uqqbxjjwLuqpFBx1fSgVVt1himGaLBmGrRsNJSlprpHqco1udj3pinviwlRDG7xU3opsMG2hZYBTy7cu5R3IXjTi9nbnfSfAkH8wBKDSLDEDywBTCRYKXO1z5g0_8MaL4KyZlJGW29UFNrZf9LfPMByzA</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Sun, Yufei</creator><creator>Aw, Grace</creator><creator>Teo, Kok Lay</creator><creator>Zhu, Yanjian</creator><creator>Wang, Xiangyu</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160801</creationdate><title>Multi-period portfolio optimization under probabilistic risk measure</title><author>Sun, Yufei ; Aw, Grace ; Teo, Kok Lay ; Zhu, Yanjian ; Wang, Xiangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-2c12c8a85abcb75f844606b532056c8f0dc95be4c411e174d0da8d033d2df1ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Decision making models</topic><topic>Discrete-time optimal control</topic><topic>Dynamic programming</topic><topic>Investment policy</topic><topic>Numerical analysis</topic><topic>Portfolio investments</topic><topic>Portfolio optimization</topic><topic>Probability risk measure</topic><topic>Risk assessment</topic><topic>Simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yufei</creatorcontrib><creatorcontrib>Aw, Grace</creatorcontrib><creatorcontrib>Teo, Kok Lay</creatorcontrib><creatorcontrib>Zhu, Yanjian</creatorcontrib><creatorcontrib>Wang, Xiangyu</creatorcontrib><collection>CrossRef</collection><jtitle>Finance research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yufei</au><au>Aw, Grace</au><au>Teo, Kok Lay</au><au>Zhu, Yanjian</au><au>Wang, Xiangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-period portfolio optimization under probabilistic risk measure</atitle><jtitle>Finance research letters</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>18</volume><spage>60</spage><epage>66</epage><pages>60-66</pages><issn>1544-6123</issn><eissn>1544-6131</eissn><abstract>•Our paper provides a computationally simple analytical solution to the complex portfolio selection problem in a multi-period setting.•Probabilistic risk measure can cater for investors with different degree of risk aversion.•In our settings, the investors do not have to purchase a huge number of stocks to form an optimal portfolio.•Our model is superior over its corresponding single period one, as well as over the market index. This paper develops a minimax model for a multi-period portfolio selection problem. An analytical solution is obtained and numerical simulations demonstrate the superiority of the multi-period model over its corresponding single period one, as well as over the market index.</abstract><cop>San Diego</cop><pub>Elsevier Inc</pub><doi>10.1016/j.frl.2016.04.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1544-6123
ispartof Finance research letters, 2016-08, Vol.18, p.60-66
issn 1544-6123
1544-6131
language eng
recordid cdi_proquest_journals_1819909406
source ScienceDirect Freedom Collection
subjects Decision making models
Discrete-time optimal control
Dynamic programming
Investment policy
Numerical analysis
Portfolio investments
Portfolio optimization
Probability risk measure
Risk assessment
Simulation
Studies
title Multi-period portfolio optimization under probabilistic risk measure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-period%20portfolio%20optimization%20under%20probabilistic%20risk%20measure&rft.jtitle=Finance%20research%20letters&rft.au=Sun,%20Yufei&rft.date=2016-08-01&rft.volume=18&rft.spage=60&rft.epage=66&rft.pages=60-66&rft.issn=1544-6123&rft.eissn=1544-6131&rft_id=info:doi/10.1016/j.frl.2016.04.001&rft_dat=%3Cproquest_cross%3E4183580471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-2c12c8a85abcb75f844606b532056c8f0dc95be4c411e174d0da8d033d2df1ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1819909406&rft_id=info:pmid/&rfr_iscdi=true