Loading…
Magnetosonic rogons in electron-ion plasma
Magnetosonic rogue waves (rogons) are investigated in an electron-ion plasma by deriving the nonlinear Schrödinger (NLS) equation for low frequency limit. The first- and second-order rogue wave solutions of the NLS equation are obtained analytically and examined numerically. It is found that for den...
Saved in:
Published in: | Astrophysics and space science 2014, Vol.349 (1), p.5-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magnetosonic rogue waves (rogons) are investigated in an electron-ion plasma by deriving the nonlinear Schrödinger (NLS) equation for low frequency limit. The first- and second-order rogue wave solutions of the NLS equation are obtained analytically and examined numerically. It is found that for dense plasma and stronger magnetic field the nonlinearity decreases, which causes the rogon amplitude becomes shorter. However, the electron temperature pumping more energy to the background waves which are sucked to create rogue waves with taller amplitudes. |
---|---|
ISSN: | 0004-640X 1572-946X |
DOI: | 10.1007/s10509-013-1602-3 |