Loading…

Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities

In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of...

Full description

Saved in:
Bibliographic Details
Published in:The Review of economic studies 2016-10, Vol.83 (4 (297)), p.1511-1543
Main Authors: CHENG, XU, LIAO, ZHIPENG, SCHORFHEIDE, FRANK
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23
cites cdi_FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23
container_end_page 1543
container_issue 4 (297)
container_start_page 1511
container_title The Review of economic studies
container_volume 83
creator CHENG, XU
LIAO, ZHIPENG
SCHORFHEIDE, FRANK
description In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of factor loadings if the number of factors is constant. We develop a cross-validation procedure to fine-tune the data-dependent LASSO penalties and show that after the number of factors has been determined, a conventional least-squares approach can be used to estimate the break date consistently. The method performs well in Monte Carlo simulations. In an empirical application, we study the change in factor loadings and the emergence of new factors in a panel of U.S. macroeconomic and financial time series during the Great Recession.
doi_str_mv 10.1093/restud/rdw005
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1826399539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26160247</jstor_id><sourcerecordid>26160247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKtLl0LA9dg8ZvJYSm21UHHRCu5Cmsm0qdNJTTIU_72REVcX7j1cvvMBcIvRA0aSToKNqa8noT4hVJ2BES4ZLyTlH-dghBAtC1YRfgmuYtwjhLAQfATWq11w3afeWjiLyR10cr6DvoEvbrsrntzBdjFvdAvn2iQf4KuvbRvhyaUdXKXQm9SHfF10MemNa11yNl6Di0a30d78zTF4n8_W05di-fa8mD4uC0MlSYUQpBbGlEZYbmqTI1oqK1RmGU14XVq6wRUrhcZUyAYJirVlFWfEWFrxhtAxuB_-HoP_6rO92vs-5LBRYUEYlbKiMlPFQJngYwy2UceQRcO3wkj9FqeG4tRQXObvBn4fs_A_TBhmiJSc_gD1RW0r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826399539</pqid></control><display><type>article</type><title>Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>CHENG, XU ; LIAO, ZHIPENG ; SCHORFHEIDE, FRANK</creator><creatorcontrib>CHENG, XU ; LIAO, ZHIPENG ; SCHORFHEIDE, FRANK</creatorcontrib><description>In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of factor loadings if the number of factors is constant. We develop a cross-validation procedure to fine-tune the data-dependent LASSO penalties and show that after the number of factors has been determined, a conventional least-squares approach can be used to estimate the break date consistently. The method performs well in Monte Carlo simulations. In an empirical application, we study the change in factor loadings and the emergence of new factors in a panel of U.S. macroeconomic and financial time series during the Great Recession.</description><identifier>ISSN: 0034-6527</identifier><identifier>EISSN: 1467-937X</identifier><identifier>DOI: 10.1093/restud/rdw005</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Consistent estimators ; Datasets ; Econometric factor models ; Estimators ; Forecasting models ; Great Recession ; Macroeconomics ; Monte Carlo simulation ; Preliminary estimates ; Recessions ; Studies ; Support columns ; Time series</subject><ispartof>The Review of economic studies, 2016-10, Vol.83 (4 (297)), p.1511-1543</ispartof><rights>The Review of Economic Studies Ltd 2016</rights><rights>Copyright Oxford University Press, UK Oct 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23</citedby><cites>FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26160247$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26160247$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,33200,58213,58446</link.rule.ids></links><search><creatorcontrib>CHENG, XU</creatorcontrib><creatorcontrib>LIAO, ZHIPENG</creatorcontrib><creatorcontrib>SCHORFHEIDE, FRANK</creatorcontrib><title>Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities</title><title>The Review of economic studies</title><description>In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of factor loadings if the number of factors is constant. We develop a cross-validation procedure to fine-tune the data-dependent LASSO penalties and show that after the number of factors has been determined, a conventional least-squares approach can be used to estimate the break date consistently. The method performs well in Monte Carlo simulations. In an empirical application, we study the change in factor loadings and the emergence of new factors in a panel of U.S. macroeconomic and financial time series during the Great Recession.</description><subject>Consistent estimators</subject><subject>Datasets</subject><subject>Econometric factor models</subject><subject>Estimators</subject><subject>Forecasting models</subject><subject>Great Recession</subject><subject>Macroeconomics</subject><subject>Monte Carlo simulation</subject><subject>Preliminary estimates</subject><subject>Recessions</subject><subject>Studies</subject><subject>Support columns</subject><subject>Time series</subject><issn>0034-6527</issn><issn>1467-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNo9kEtLAzEURoMoWKtLl0LA9dg8ZvJYSm21UHHRCu5Cmsm0qdNJTTIU_72REVcX7j1cvvMBcIvRA0aSToKNqa8noT4hVJ2BES4ZLyTlH-dghBAtC1YRfgmuYtwjhLAQfATWq11w3afeWjiLyR10cr6DvoEvbrsrntzBdjFvdAvn2iQf4KuvbRvhyaUdXKXQm9SHfF10MemNa11yNl6Di0a30d78zTF4n8_W05di-fa8mD4uC0MlSYUQpBbGlEZYbmqTI1oqK1RmGU14XVq6wRUrhcZUyAYJirVlFWfEWFrxhtAxuB_-HoP_6rO92vs-5LBRYUEYlbKiMlPFQJngYwy2UceQRcO3wkj9FqeG4tRQXObvBn4fs_A_TBhmiJSc_gD1RW0r</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>CHENG, XU</creator><creator>LIAO, ZHIPENG</creator><creator>SCHORFHEIDE, FRANK</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20161001</creationdate><title>Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities</title><author>CHENG, XU ; LIAO, ZHIPENG ; SCHORFHEIDE, FRANK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Consistent estimators</topic><topic>Datasets</topic><topic>Econometric factor models</topic><topic>Estimators</topic><topic>Forecasting models</topic><topic>Great Recession</topic><topic>Macroeconomics</topic><topic>Monte Carlo simulation</topic><topic>Preliminary estimates</topic><topic>Recessions</topic><topic>Studies</topic><topic>Support columns</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHENG, XU</creatorcontrib><creatorcontrib>LIAO, ZHIPENG</creatorcontrib><creatorcontrib>SCHORFHEIDE, FRANK</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Review of economic studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHENG, XU</au><au>LIAO, ZHIPENG</au><au>SCHORFHEIDE, FRANK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities</atitle><jtitle>The Review of economic studies</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>83</volume><issue>4 (297)</issue><spage>1511</spage><epage>1543</epage><pages>1511-1543</pages><issn>0034-6527</issn><eissn>1467-937X</eissn><abstract>In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of factor loadings if the number of factors is constant. We develop a cross-validation procedure to fine-tune the data-dependent LASSO penalties and show that after the number of factors has been determined, a conventional least-squares approach can be used to estimate the break date consistently. The method performs well in Monte Carlo simulations. In an empirical application, we study the change in factor loadings and the emergence of new factors in a panel of U.S. macroeconomic and financial time series during the Great Recession.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/restud/rdw005</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6527
ispartof The Review of economic studies, 2016-10, Vol.83 (4 (297)), p.1511-1543
issn 0034-6527
1467-937X
language eng
recordid cdi_proquest_journals_1826399539
source EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online
subjects Consistent estimators
Datasets
Econometric factor models
Estimators
Forecasting models
Great Recession
Macroeconomics
Monte Carlo simulation
Preliminary estimates
Recessions
Studies
Support columns
Time series
title Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shrinkage%20Estimation%20of%20High-Dimensional%20Factor%20Models%20with%20Structural%20Instabilities&rft.jtitle=The%20Review%20of%20economic%20studies&rft.au=CHENG,%20XU&rft.date=2016-10-01&rft.volume=83&rft.issue=4%20(297)&rft.spage=1511&rft.epage=1543&rft.pages=1511-1543&rft.issn=0034-6527&rft.eissn=1467-937X&rft_id=info:doi/10.1093/restud/rdw005&rft_dat=%3Cjstor_proqu%3E26160247%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826399539&rft_id=info:pmid/&rft_jstor_id=26160247&rfr_iscdi=true