Loading…
Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities
In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of...
Saved in:
Published in: | The Review of economic studies 2016-10, Vol.83 (4 (297)), p.1511-1543 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23 |
container_end_page | 1543 |
container_issue | 4 (297) |
container_start_page | 1511 |
container_title | The Review of economic studies |
container_volume | 83 |
creator | CHENG, XU LIAO, ZHIPENG SCHORFHEIDE, FRANK |
description | In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of factor loadings if the number of factors is constant. We develop a cross-validation procedure to fine-tune the data-dependent LASSO penalties and show that after the number of factors has been determined, a conventional least-squares approach can be used to estimate the break date consistently. The method performs well in Monte Carlo simulations. In an empirical application, we study the change in factor loadings and the emergence of new factors in a panel of U.S. macroeconomic and financial time series during the Great Recession. |
doi_str_mv | 10.1093/restud/rdw005 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1826399539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26160247</jstor_id><sourcerecordid>26160247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23</originalsourceid><addsrcrecordid>eNo9kEtLAzEURoMoWKtLl0LA9dg8ZvJYSm21UHHRCu5Cmsm0qdNJTTIU_72REVcX7j1cvvMBcIvRA0aSToKNqa8noT4hVJ2BES4ZLyTlH-dghBAtC1YRfgmuYtwjhLAQfATWq11w3afeWjiLyR10cr6DvoEvbrsrntzBdjFvdAvn2iQf4KuvbRvhyaUdXKXQm9SHfF10MemNa11yNl6Di0a30d78zTF4n8_W05di-fa8mD4uC0MlSYUQpBbGlEZYbmqTI1oqK1RmGU14XVq6wRUrhcZUyAYJirVlFWfEWFrxhtAxuB_-HoP_6rO92vs-5LBRYUEYlbKiMlPFQJngYwy2UceQRcO3wkj9FqeG4tRQXObvBn4fs_A_TBhmiJSc_gD1RW0r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826399539</pqid></control><display><type>article</type><title>Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities</title><source>EconLit s plnými texty</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>CHENG, XU ; LIAO, ZHIPENG ; SCHORFHEIDE, FRANK</creator><creatorcontrib>CHENG, XU ; LIAO, ZHIPENG ; SCHORFHEIDE, FRANK</creatorcontrib><description>In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of factor loadings if the number of factors is constant. We develop a cross-validation procedure to fine-tune the data-dependent LASSO penalties and show that after the number of factors has been determined, a conventional least-squares approach can be used to estimate the break date consistently. The method performs well in Monte Carlo simulations. In an empirical application, we study the change in factor loadings and the emergence of new factors in a panel of U.S. macroeconomic and financial time series during the Great Recession.</description><identifier>ISSN: 0034-6527</identifier><identifier>EISSN: 1467-937X</identifier><identifier>DOI: 10.1093/restud/rdw005</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Consistent estimators ; Datasets ; Econometric factor models ; Estimators ; Forecasting models ; Great Recession ; Macroeconomics ; Monte Carlo simulation ; Preliminary estimates ; Recessions ; Studies ; Support columns ; Time series</subject><ispartof>The Review of economic studies, 2016-10, Vol.83 (4 (297)), p.1511-1543</ispartof><rights>The Review of Economic Studies Ltd 2016</rights><rights>Copyright Oxford University Press, UK Oct 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23</citedby><cites>FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26160247$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26160247$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,33200,58213,58446</link.rule.ids></links><search><creatorcontrib>CHENG, XU</creatorcontrib><creatorcontrib>LIAO, ZHIPENG</creatorcontrib><creatorcontrib>SCHORFHEIDE, FRANK</creatorcontrib><title>Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities</title><title>The Review of economic studies</title><description>In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of factor loadings if the number of factors is constant. We develop a cross-validation procedure to fine-tune the data-dependent LASSO penalties and show that after the number of factors has been determined, a conventional least-squares approach can be used to estimate the break date consistently. The method performs well in Monte Carlo simulations. In an empirical application, we study the change in factor loadings and the emergence of new factors in a panel of U.S. macroeconomic and financial time series during the Great Recession.</description><subject>Consistent estimators</subject><subject>Datasets</subject><subject>Econometric factor models</subject><subject>Estimators</subject><subject>Forecasting models</subject><subject>Great Recession</subject><subject>Macroeconomics</subject><subject>Monte Carlo simulation</subject><subject>Preliminary estimates</subject><subject>Recessions</subject><subject>Studies</subject><subject>Support columns</subject><subject>Time series</subject><issn>0034-6527</issn><issn>1467-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNo9kEtLAzEURoMoWKtLl0LA9dg8ZvJYSm21UHHRCu5Cmsm0qdNJTTIU_72REVcX7j1cvvMBcIvRA0aSToKNqa8noT4hVJ2BES4ZLyTlH-dghBAtC1YRfgmuYtwjhLAQfATWq11w3afeWjiLyR10cr6DvoEvbrsrntzBdjFvdAvn2iQf4KuvbRvhyaUdXKXQm9SHfF10MemNa11yNl6Di0a30d78zTF4n8_W05di-fa8mD4uC0MlSYUQpBbGlEZYbmqTI1oqK1RmGU14XVq6wRUrhcZUyAYJirVlFWfEWFrxhtAxuB_-HoP_6rO92vs-5LBRYUEYlbKiMlPFQJngYwy2UceQRcO3wkj9FqeG4tRQXObvBn4fs_A_TBhmiJSc_gD1RW0r</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>CHENG, XU</creator><creator>LIAO, ZHIPENG</creator><creator>SCHORFHEIDE, FRANK</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20161001</creationdate><title>Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities</title><author>CHENG, XU ; LIAO, ZHIPENG ; SCHORFHEIDE, FRANK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Consistent estimators</topic><topic>Datasets</topic><topic>Econometric factor models</topic><topic>Estimators</topic><topic>Forecasting models</topic><topic>Great Recession</topic><topic>Macroeconomics</topic><topic>Monte Carlo simulation</topic><topic>Preliminary estimates</topic><topic>Recessions</topic><topic>Studies</topic><topic>Support columns</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHENG, XU</creatorcontrib><creatorcontrib>LIAO, ZHIPENG</creatorcontrib><creatorcontrib>SCHORFHEIDE, FRANK</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The Review of economic studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHENG, XU</au><au>LIAO, ZHIPENG</au><au>SCHORFHEIDE, FRANK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities</atitle><jtitle>The Review of economic studies</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>83</volume><issue>4 (297)</issue><spage>1511</spage><epage>1543</epage><pages>1511-1543</pages><issn>0034-6527</issn><eissn>1467-937X</eissn><abstract>In large-scale panel data models with latent factors the number of factors and their loadings may change over time. Treating the break date as unknown, this article proposes an adaptive group-LASSO estimator that consistently determines the numbers of pre- and post-break factors and the stability of factor loadings if the number of factors is constant. We develop a cross-validation procedure to fine-tune the data-dependent LASSO penalties and show that after the number of factors has been determined, a conventional least-squares approach can be used to estimate the break date consistently. The method performs well in Monte Carlo simulations. In an empirical application, we study the change in factor loadings and the emergence of new factors in a panel of U.S. macroeconomic and financial time series during the Great Recession.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/restud/rdw005</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6527 |
ispartof | The Review of economic studies, 2016-10, Vol.83 (4 (297)), p.1511-1543 |
issn | 0034-6527 1467-937X |
language | eng |
recordid | cdi_proquest_journals_1826399539 |
source | EconLit s plnými texty; International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online |
subjects | Consistent estimators Datasets Econometric factor models Estimators Forecasting models Great Recession Macroeconomics Monte Carlo simulation Preliminary estimates Recessions Studies Support columns Time series |
title | Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shrinkage%20Estimation%20of%20High-Dimensional%20Factor%20Models%20with%20Structural%20Instabilities&rft.jtitle=The%20Review%20of%20economic%20studies&rft.au=CHENG,%20XU&rft.date=2016-10-01&rft.volume=83&rft.issue=4%20(297)&rft.spage=1511&rft.epage=1543&rft.pages=1511-1543&rft.issn=0034-6527&rft.eissn=1467-937X&rft_id=info:doi/10.1093/restud/rdw005&rft_dat=%3Cjstor_proqu%3E26160247%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-882d8cc4c8e7cdc003e39504109a27d4e3b15648a1389f0831ae65762ce357f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826399539&rft_id=info:pmid/&rft_jstor_id=26160247&rfr_iscdi=true |