Loading…

Robust Flash Calculation Algorithm for Microemulsion Phase Behavior

The HLD-NAC model was recently modified to match and predict microemulsion phase behavior experimental data for Winsor type III regions. Until now, the HLD-NAC model could not generate realistic phase behavior for type II− and type II+ two-phase regions, leading to significant saturation and composi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of surfactants and detergents 2016-11, Vol.19 (6), p.1273-1287
Main Authors: Khorsandi, Saeid, Johns, Russell T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3643-17b09e13178540e844cbe71caec3427f019aede3c3188337b0156c134ef9e3fe3
cites cdi_FETCH-LOGICAL-c3643-17b09e13178540e844cbe71caec3427f019aede3c3188337b0156c134ef9e3fe3
container_end_page 1287
container_issue 6
container_start_page 1273
container_title Journal of surfactants and detergents
container_volume 19
creator Khorsandi, Saeid
Johns, Russell T.
description The HLD-NAC model was recently modified to match and predict microemulsion phase behavior experimental data for Winsor type III regions. Until now, the HLD-NAC model could not generate realistic phase behavior for type II− and type II+ two-phase regions, leading to significant saturation and composition discontinuities when catastrophe theory is applied. These discontinuities lead to significant failures in modeling surfactant applications. We modify the HLD-NAC equations to ensure consistency over the entire composition space including type II− and II+ regions. A robust and efficient algorithm is developed that always converges and provides continuous estimates with any formation variable of tie lines and triangles for all Winsor types. Discontinuities are eliminated and limiting tie lines near critical points are determined analytically. The tuning procedure is demonstrated using several sets of experimental data. Excellent predictability of tie lines and tie triangles, and solubilization ratios are shown.
doi_str_mv 10.1007/s11743-016-1877-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1827074359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4208496821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3643-17b09e13178540e844cbe71caec3427f019aede3c3188337b0156c134ef9e3fe3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwAewisQ544ri2lyW0PAQC8Vhbrpk0qdK62Amof4-jsGCDWHkk3zNzdQg5BXoOlIqLACByllKYpCCFSNUeGQHnMlWZYvtxpkqkTHF5SI5CWFGaQc75iBTPbtGFNpk3JlRJYRrbNaat3SaZNkvn67ZaJ6XzyUNtvcN114T-76kyAZNLrMxn7fwxOShNE_Dk5x2Tt_nstbhJ7x-vb4vpfWrZJHYDsaAKgYGQPKco89wuUIA1aFmeiZKCMviOzDKQkrGYBj6xwHIsFbIS2ZicDXu33n10GFq9cp3fxJMaZCZoFMBVTMGQioVD8Fjqra_Xxu80UN270oMrHV3p3pXuGTEwX3WDu_8BffdyNYNMsEhmAxkitFmi_9Xpz3PfD0Z7pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827074359</pqid></control><display><type>article</type><title>Robust Flash Calculation Algorithm for Microemulsion Phase Behavior</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Khorsandi, Saeid ; Johns, Russell T.</creator><creatorcontrib>Khorsandi, Saeid ; Johns, Russell T.</creatorcontrib><description>The HLD-NAC model was recently modified to match and predict microemulsion phase behavior experimental data for Winsor type III regions. Until now, the HLD-NAC model could not generate realistic phase behavior for type II− and type II+ two-phase regions, leading to significant saturation and composition discontinuities when catastrophe theory is applied. These discontinuities lead to significant failures in modeling surfactant applications. We modify the HLD-NAC equations to ensure consistency over the entire composition space including type II− and II+ regions. A robust and efficient algorithm is developed that always converges and provides continuous estimates with any formation variable of tie lines and triangles for all Winsor types. Discontinuities are eliminated and limiting tie lines near critical points are determined analytically. The tuning procedure is demonstrated using several sets of experimental data. Excellent predictability of tie lines and tie triangles, and solubilization ratios are shown.</description><identifier>ISSN: 1097-3958</identifier><identifier>EISSN: 1558-9293</identifier><identifier>DOI: 10.1007/s11743-016-1877-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Aquatic Pollution ; Chemistry ; Chemistry and Materials Science ; Experimental data ; Flash ; HLD‐NAC ; Industrial Chemistry/Chemical Engineering ; Microemulsion ; Microemulsions ; Original Article ; Phase behavior model ; Phase transitions ; Physical Chemistry ; Polymer Sciences ; Simulation ; Surfaces and Interfaces ; Surfactant ; Surfactants ; Thin Films ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Journal of surfactants and detergents, 2016-11, Vol.19 (6), p.1273-1287</ispartof><rights>AOCS 2016</rights><rights>2016 American Oil Chemists' Society (AOCS)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3643-17b09e13178540e844cbe71caec3427f019aede3c3188337b0156c134ef9e3fe3</citedby><cites>FETCH-LOGICAL-c3643-17b09e13178540e844cbe71caec3427f019aede3c3188337b0156c134ef9e3fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Khorsandi, Saeid</creatorcontrib><creatorcontrib>Johns, Russell T.</creatorcontrib><title>Robust Flash Calculation Algorithm for Microemulsion Phase Behavior</title><title>Journal of surfactants and detergents</title><addtitle>J Surfact Deterg</addtitle><description>The HLD-NAC model was recently modified to match and predict microemulsion phase behavior experimental data for Winsor type III regions. Until now, the HLD-NAC model could not generate realistic phase behavior for type II− and type II+ two-phase regions, leading to significant saturation and composition discontinuities when catastrophe theory is applied. These discontinuities lead to significant failures in modeling surfactant applications. We modify the HLD-NAC equations to ensure consistency over the entire composition space including type II− and II+ regions. A robust and efficient algorithm is developed that always converges and provides continuous estimates with any formation variable of tie lines and triangles for all Winsor types. Discontinuities are eliminated and limiting tie lines near critical points are determined analytically. The tuning procedure is demonstrated using several sets of experimental data. Excellent predictability of tie lines and tie triangles, and solubilization ratios are shown.</description><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Experimental data</subject><subject>Flash</subject><subject>HLD‐NAC</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Microemulsion</subject><subject>Microemulsions</subject><subject>Original Article</subject><subject>Phase behavior model</subject><subject>Phase transitions</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Simulation</subject><subject>Surfaces and Interfaces</subject><subject>Surfactant</subject><subject>Surfactants</subject><subject>Thin Films</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1097-3958</issn><issn>1558-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwAewisQ544ri2lyW0PAQC8Vhbrpk0qdK62Amof4-jsGCDWHkk3zNzdQg5BXoOlIqLACByllKYpCCFSNUeGQHnMlWZYvtxpkqkTHF5SI5CWFGaQc75iBTPbtGFNpk3JlRJYRrbNaat3SaZNkvn67ZaJ6XzyUNtvcN114T-76kyAZNLrMxn7fwxOShNE_Dk5x2Tt_nstbhJ7x-vb4vpfWrZJHYDsaAKgYGQPKco89wuUIA1aFmeiZKCMviOzDKQkrGYBj6xwHIsFbIS2ZicDXu33n10GFq9cp3fxJMaZCZoFMBVTMGQioVD8Fjqra_Xxu80UN270oMrHV3p3pXuGTEwX3WDu_8BffdyNYNMsEhmAxkitFmi_9Xpz3PfD0Z7pQ</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Khorsandi, Saeid</creator><creator>Johns, Russell T.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QH</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201611</creationdate><title>Robust Flash Calculation Algorithm for Microemulsion Phase Behavior</title><author>Khorsandi, Saeid ; Johns, Russell T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3643-17b09e13178540e844cbe71caec3427f019aede3c3188337b0156c134ef9e3fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Experimental data</topic><topic>Flash</topic><topic>HLD‐NAC</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Microemulsion</topic><topic>Microemulsions</topic><topic>Original Article</topic><topic>Phase behavior model</topic><topic>Phase transitions</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Simulation</topic><topic>Surfaces and Interfaces</topic><topic>Surfactant</topic><topic>Surfactants</topic><topic>Thin Films</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khorsandi, Saeid</creatorcontrib><creatorcontrib>Johns, Russell T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of surfactants and detergents</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khorsandi, Saeid</au><au>Johns, Russell T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Flash Calculation Algorithm for Microemulsion Phase Behavior</atitle><jtitle>Journal of surfactants and detergents</jtitle><stitle>J Surfact Deterg</stitle><date>2016-11</date><risdate>2016</risdate><volume>19</volume><issue>6</issue><spage>1273</spage><epage>1287</epage><pages>1273-1287</pages><issn>1097-3958</issn><eissn>1558-9293</eissn><abstract>The HLD-NAC model was recently modified to match and predict microemulsion phase behavior experimental data for Winsor type III regions. Until now, the HLD-NAC model could not generate realistic phase behavior for type II− and type II+ two-phase regions, leading to significant saturation and composition discontinuities when catastrophe theory is applied. These discontinuities lead to significant failures in modeling surfactant applications. We modify the HLD-NAC equations to ensure consistency over the entire composition space including type II− and II+ regions. A robust and efficient algorithm is developed that always converges and provides continuous estimates with any formation variable of tie lines and triangles for all Winsor types. Discontinuities are eliminated and limiting tie lines near critical points are determined analytically. The tuning procedure is demonstrated using several sets of experimental data. Excellent predictability of tie lines and tie triangles, and solubilization ratios are shown.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11743-016-1877-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-3958
ispartof Journal of surfactants and detergents, 2016-11, Vol.19 (6), p.1273-1287
issn 1097-3958
1558-9293
language eng
recordid cdi_proquest_journals_1827074359
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Aquatic Pollution
Chemistry
Chemistry and Materials Science
Experimental data
Flash
HLD‐NAC
Industrial Chemistry/Chemical Engineering
Microemulsion
Microemulsions
Original Article
Phase behavior model
Phase transitions
Physical Chemistry
Polymer Sciences
Simulation
Surfaces and Interfaces
Surfactant
Surfactants
Thin Films
Waste Water Technology
Water Management
Water Pollution Control
title Robust Flash Calculation Algorithm for Microemulsion Phase Behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Flash%20Calculation%20Algorithm%20for%20Microemulsion%20Phase%20Behavior&rft.jtitle=Journal%20of%20surfactants%20and%20detergents&rft.au=Khorsandi,%20Saeid&rft.date=2016-11&rft.volume=19&rft.issue=6&rft.spage=1273&rft.epage=1287&rft.pages=1273-1287&rft.issn=1097-3958&rft.eissn=1558-9293&rft_id=info:doi/10.1007/s11743-016-1877-9&rft_dat=%3Cproquest_cross%3E4208496821%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3643-17b09e13178540e844cbe71caec3427f019aede3c3188337b0156c134ef9e3fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1827074359&rft_id=info:pmid/&rfr_iscdi=true