Loading…
Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties
This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimat...
Saved in:
Published in: | IEEE communications letters 2016-09, Vol.20 (9), p.1860-1863 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3 |
container_end_page | 1863 |
container_issue | 9 |
container_start_page | 1860 |
container_title | IEEE communications letters |
container_volume | 20 |
creator | Zou, Yanbin Wan, Qun |
description | This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimator (MLE). It is well known that minimization of a nonlinear and nonconvex MLE cost function is not a trivial problem. We use the semidefinite programming (SDP) method to convert the nonconvex MLE problem into convex problem. However, it is shown that the original SDP algorithm is not tight and cannot provide a high-quality solution. Previous research call the untightness of the original SDP algorithm as ambiguity, and they propose to add a penalty term to avoid the ambiguity. In this letter, we show that jointly adding the second-order-cone constraints and penalty term can significantly improve the tightness of the original SDP algorithm. Simulation results are included to evaluate the localization accuracy of the proposed algorithms by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound. |
doi_str_mv | 10.1109/LCOMM.2016.2589930 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1830949964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7508911</ieee_id><sourcerecordid>4223621091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhRdRsFb_gL4s-JyaZDeb5LEWb9BSoS3iU8hmJzSl3WiyFeqvN73gy8wwnDNn-LLsluABIVg-jEfTyWRAMakGlAkpC3yW9QhjAtFUztOMhUScS3GZXcW4whgLykgv-xzGXWuWwbd-G_O52wDyFg1DcD96jR51hCaf-W0wkI-90Wv3qzvn2_zDdct8Bm30IX_30R2Wi9ZA6LRrOwfxOruweh3h5tT72eL5aT56RePpy9toOEaGStahGteGATOUMtxAZYzVpbWWYdaAELIuKJccU15ajUvKOTS6ooU1PEmbmjRFP7s_3v0K_nsLsVOr9G-bIhURBZallFWZVPSoMsHHGMCqr-A2OuwUwWqPUB0Qqj1CdUKYTHdHkwOAfwNniSUhxR-sNW7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830949964</pqid></control><display><type>article</type><title>Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties</title><source>IEEE Xplore (Online service)</source><creator>Zou, Yanbin ; Wan, Qun</creator><creatorcontrib>Zou, Yanbin ; Wan, Qun</creatorcontrib><description>This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimator (MLE). It is well known that minimization of a nonlinear and nonconvex MLE cost function is not a trivial problem. We use the semidefinite programming (SDP) method to convert the nonconvex MLE problem into convex problem. However, it is shown that the original SDP algorithm is not tight and cannot provide a high-quality solution. Previous research call the untightness of the original SDP algorithm as ambiguity, and they propose to add a penalty term to avoid the ambiguity. In this letter, we show that jointly adding the second-order-cone constraints and penalty term can significantly improve the tightness of the original SDP algorithm. Simulation results are included to evaluate the localization accuracy of the proposed algorithms by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2016.2589930</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Maximum likelihood estimation ; Optimization ; Position measurement ; Programming ; Robustness ; semidefinite programming (SDP) ; Simulation ; Source localization ; Time measurement ; time-of-arrival (TOA)</subject><ispartof>IEEE communications letters, 2016-09, Vol.20 (9), p.1860-1863</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3</citedby><cites>FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7508911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Zou, Yanbin</creatorcontrib><creatorcontrib>Wan, Qun</creatorcontrib><title>Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimator (MLE). It is well known that minimization of a nonlinear and nonconvex MLE cost function is not a trivial problem. We use the semidefinite programming (SDP) method to convert the nonconvex MLE problem into convex problem. However, it is shown that the original SDP algorithm is not tight and cannot provide a high-quality solution. Previous research call the untightness of the original SDP algorithm as ambiguity, and they propose to add a penalty term to avoid the ambiguity. In this letter, we show that jointly adding the second-order-cone constraints and penalty term can significantly improve the tightness of the original SDP algorithm. Simulation results are included to evaluate the localization accuracy of the proposed algorithms by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.</description><subject>Maximum likelihood estimation</subject><subject>Optimization</subject><subject>Position measurement</subject><subject>Programming</subject><subject>Robustness</subject><subject>semidefinite programming (SDP)</subject><subject>Simulation</subject><subject>Source localization</subject><subject>Time measurement</subject><subject>time-of-arrival (TOA)</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhRdRsFb_gL4s-JyaZDeb5LEWb9BSoS3iU8hmJzSl3WiyFeqvN73gy8wwnDNn-LLsluABIVg-jEfTyWRAMakGlAkpC3yW9QhjAtFUztOMhUScS3GZXcW4whgLykgv-xzGXWuWwbd-G_O52wDyFg1DcD96jR51hCaf-W0wkI-90Wv3qzvn2_zDdct8Bm30IX_30R2Wi9ZA6LRrOwfxOruweh3h5tT72eL5aT56RePpy9toOEaGStahGteGATOUMtxAZYzVpbWWYdaAELIuKJccU15ajUvKOTS6ooU1PEmbmjRFP7s_3v0K_nsLsVOr9G-bIhURBZallFWZVPSoMsHHGMCqr-A2OuwUwWqPUB0Qqj1CdUKYTHdHkwOAfwNniSUhxR-sNW7w</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Zou, Yanbin</creator><creator>Wan, Qun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties</title><author>Zou, Yanbin ; Wan, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Maximum likelihood estimation</topic><topic>Optimization</topic><topic>Position measurement</topic><topic>Programming</topic><topic>Robustness</topic><topic>semidefinite programming (SDP)</topic><topic>Simulation</topic><topic>Source localization</topic><topic>Time measurement</topic><topic>time-of-arrival (TOA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yanbin</creatorcontrib><creatorcontrib>Wan, Qun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yanbin</au><au>Wan, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2016-09</date><risdate>2016</risdate><volume>20</volume><issue>9</issue><spage>1860</spage><epage>1863</epage><pages>1860-1863</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimator (MLE). It is well known that minimization of a nonlinear and nonconvex MLE cost function is not a trivial problem. We use the semidefinite programming (SDP) method to convert the nonconvex MLE problem into convex problem. However, it is shown that the original SDP algorithm is not tight and cannot provide a high-quality solution. Previous research call the untightness of the original SDP algorithm as ambiguity, and they propose to add a penalty term to avoid the ambiguity. In this letter, we show that jointly adding the second-order-cone constraints and penalty term can significantly improve the tightness of the original SDP algorithm. Simulation results are included to evaluate the localization accuracy of the proposed algorithms by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2016.2589930</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2016-09, Vol.20 (9), p.1860-1863 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_journals_1830949964 |
source | IEEE Xplore (Online service) |
subjects | Maximum likelihood estimation Optimization Position measurement Programming Robustness semidefinite programming (SDP) Simulation Source localization Time measurement time-of-arrival (TOA) |
title | Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asynchronous%20Time-of-Arrival-Based%20Source%20Localization%20With%20Sensor%20Position%20Uncertainties&rft.jtitle=IEEE%20communications%20letters&rft.au=Zou,%20Yanbin&rft.date=2016-09&rft.volume=20&rft.issue=9&rft.spage=1860&rft.epage=1863&rft.pages=1860-1863&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2016.2589930&rft_dat=%3Cproquest_cross%3E4223621091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830949964&rft_id=info:pmid/&rft_ieee_id=7508911&rfr_iscdi=true |