Loading…

Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties

This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters 2016-09, Vol.20 (9), p.1860-1863
Main Authors: Zou, Yanbin, Wan, Qun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3
cites cdi_FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3
container_end_page 1863
container_issue 9
container_start_page 1860
container_title IEEE communications letters
container_volume 20
creator Zou, Yanbin
Wan, Qun
description This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimator (MLE). It is well known that minimization of a nonlinear and nonconvex MLE cost function is not a trivial problem. We use the semidefinite programming (SDP) method to convert the nonconvex MLE problem into convex problem. However, it is shown that the original SDP algorithm is not tight and cannot provide a high-quality solution. Previous research call the untightness of the original SDP algorithm as ambiguity, and they propose to add a penalty term to avoid the ambiguity. In this letter, we show that jointly adding the second-order-cone constraints and penalty term can significantly improve the tightness of the original SDP algorithm. Simulation results are included to evaluate the localization accuracy of the proposed algorithms by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.
doi_str_mv 10.1109/LCOMM.2016.2589930
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1830949964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7508911</ieee_id><sourcerecordid>4223621091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhRdRsFb_gL4s-JyaZDeb5LEWb9BSoS3iU8hmJzSl3WiyFeqvN73gy8wwnDNn-LLsluABIVg-jEfTyWRAMakGlAkpC3yW9QhjAtFUztOMhUScS3GZXcW4whgLykgv-xzGXWuWwbd-G_O52wDyFg1DcD96jR51hCaf-W0wkI-90Wv3qzvn2_zDdct8Bm30IX_30R2Wi9ZA6LRrOwfxOruweh3h5tT72eL5aT56RePpy9toOEaGStahGteGATOUMtxAZYzVpbWWYdaAELIuKJccU15ajUvKOTS6ooU1PEmbmjRFP7s_3v0K_nsLsVOr9G-bIhURBZallFWZVPSoMsHHGMCqr-A2OuwUwWqPUB0Qqj1CdUKYTHdHkwOAfwNniSUhxR-sNW7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830949964</pqid></control><display><type>article</type><title>Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties</title><source>IEEE Xplore (Online service)</source><creator>Zou, Yanbin ; Wan, Qun</creator><creatorcontrib>Zou, Yanbin ; Wan, Qun</creatorcontrib><description>This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimator (MLE). It is well known that minimization of a nonlinear and nonconvex MLE cost function is not a trivial problem. We use the semidefinite programming (SDP) method to convert the nonconvex MLE problem into convex problem. However, it is shown that the original SDP algorithm is not tight and cannot provide a high-quality solution. Previous research call the untightness of the original SDP algorithm as ambiguity, and they propose to add a penalty term to avoid the ambiguity. In this letter, we show that jointly adding the second-order-cone constraints and penalty term can significantly improve the tightness of the original SDP algorithm. Simulation results are included to evaluate the localization accuracy of the proposed algorithms by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2016.2589930</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Maximum likelihood estimation ; Optimization ; Position measurement ; Programming ; Robustness ; semidefinite programming (SDP) ; Simulation ; Source localization ; Time measurement ; time-of-arrival (TOA)</subject><ispartof>IEEE communications letters, 2016-09, Vol.20 (9), p.1860-1863</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3</citedby><cites>FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7508911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Zou, Yanbin</creatorcontrib><creatorcontrib>Wan, Qun</creatorcontrib><title>Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimator (MLE). It is well known that minimization of a nonlinear and nonconvex MLE cost function is not a trivial problem. We use the semidefinite programming (SDP) method to convert the nonconvex MLE problem into convex problem. However, it is shown that the original SDP algorithm is not tight and cannot provide a high-quality solution. Previous research call the untightness of the original SDP algorithm as ambiguity, and they propose to add a penalty term to avoid the ambiguity. In this letter, we show that jointly adding the second-order-cone constraints and penalty term can significantly improve the tightness of the original SDP algorithm. Simulation results are included to evaluate the localization accuracy of the proposed algorithms by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.</description><subject>Maximum likelihood estimation</subject><subject>Optimization</subject><subject>Position measurement</subject><subject>Programming</subject><subject>Robustness</subject><subject>semidefinite programming (SDP)</subject><subject>Simulation</subject><subject>Source localization</subject><subject>Time measurement</subject><subject>time-of-arrival (TOA)</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhRdRsFb_gL4s-JyaZDeb5LEWb9BSoS3iU8hmJzSl3WiyFeqvN73gy8wwnDNn-LLsluABIVg-jEfTyWRAMakGlAkpC3yW9QhjAtFUztOMhUScS3GZXcW4whgLykgv-xzGXWuWwbd-G_O52wDyFg1DcD96jR51hCaf-W0wkI-90Wv3qzvn2_zDdct8Bm30IX_30R2Wi9ZA6LRrOwfxOruweh3h5tT72eL5aT56RePpy9toOEaGStahGteGATOUMtxAZYzVpbWWYdaAELIuKJccU15ajUvKOTS6ooU1PEmbmjRFP7s_3v0K_nsLsVOr9G-bIhURBZallFWZVPSoMsHHGMCqr-A2OuwUwWqPUB0Qqj1CdUKYTHdHkwOAfwNniSUhxR-sNW7w</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Zou, Yanbin</creator><creator>Wan, Qun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties</title><author>Zou, Yanbin ; Wan, Qun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Maximum likelihood estimation</topic><topic>Optimization</topic><topic>Position measurement</topic><topic>Programming</topic><topic>Robustness</topic><topic>semidefinite programming (SDP)</topic><topic>Simulation</topic><topic>Source localization</topic><topic>Time measurement</topic><topic>time-of-arrival (TOA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yanbin</creatorcontrib><creatorcontrib>Wan, Qun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yanbin</au><au>Wan, Qun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2016-09</date><risdate>2016</risdate><volume>20</volume><issue>9</issue><spage>1860</spage><epage>1863</epage><pages>1860-1863</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>This letter considers the problem of source localization from signal time-of-arrival measurements with unknown start transmission time and sensor position uncertainties. Under the standard assumption of uncorrelated Gaussian distributed measurement errors, we formulate the maximum likelihood estimator (MLE). It is well known that minimization of a nonlinear and nonconvex MLE cost function is not a trivial problem. We use the semidefinite programming (SDP) method to convert the nonconvex MLE problem into convex problem. However, it is shown that the original SDP algorithm is not tight and cannot provide a high-quality solution. Previous research call the untightness of the original SDP algorithm as ambiguity, and they propose to add a penalty term to avoid the ambiguity. In this letter, we show that jointly adding the second-order-cone constraints and penalty term can significantly improve the tightness of the original SDP algorithm. Simulation results are included to evaluate the localization accuracy of the proposed algorithms by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2016.2589930</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2016-09, Vol.20 (9), p.1860-1863
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_1830949964
source IEEE Xplore (Online service)
subjects Maximum likelihood estimation
Optimization
Position measurement
Programming
Robustness
semidefinite programming (SDP)
Simulation
Source localization
Time measurement
time-of-arrival (TOA)
title Asynchronous Time-of-Arrival-Based Source Localization With Sensor Position Uncertainties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asynchronous%20Time-of-Arrival-Based%20Source%20Localization%20With%20Sensor%20Position%20Uncertainties&rft.jtitle=IEEE%20communications%20letters&rft.au=Zou,%20Yanbin&rft.date=2016-09&rft.volume=20&rft.issue=9&rft.spage=1860&rft.epage=1863&rft.pages=1860-1863&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2016.2589930&rft_dat=%3Cproquest_cross%3E4223621091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-b0bc5e5c2250de6ccfa4fff505de889b327970274fa04277eda623fc76ccdb1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1830949964&rft_id=info:pmid/&rft_ieee_id=7508911&rfr_iscdi=true