Loading…

SON Coordination in Heterogeneous Networks: A Reinforcement Learning Framework

An important problem of today's mobile network operators is to bring down the capital expenditures and operational expenditures. One strategy is to automate the parameter tuning on the small cells through the so-called self-organizing network (SON) functionalities, such as cell range expansion,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2016-09, Vol.15 (9), p.5835-5847
Main Authors: Iacoboaiea, Ovidiu-Constantin, Sayrac, Berna, Ben Jemaa, Sana, Bianchi, Pascal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An important problem of today's mobile network operators is to bring down the capital expenditures and operational expenditures. One strategy is to automate the parameter tuning on the small cells through the so-called self-organizing network (SON) functionalities, such as cell range expansion, mobility robustness optimization, or enhanced Inter-Cell Interference Coordination. Having several of these functionalities in the network will surely create conflicts, as, for example, they may try to change the same parameter in the opposite directions. This raises that the need for an SON COordinator (SONCO) meant to arbitrate the parameter change requests of the SON functions, ensuring some degree of fairness. It is difficult to anticipate the impact of accepting several simultaneous requests. In this paper, we provide a SONCO design based on reinforcement learning (RL) as it allows us to learn from previous experiences and improve our future decisions. Typically, RL algorithms are complex. To reduce this complexity, we employ two flavors of function approximation and provide a study-case. Results show that the proposed SONCO design is capable of biasing this fairness among the SON functions by means of weights attributed to the SON functions. Also, we evaluate the tracking capability of the algorithms.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2016.2571695