Loading…

Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing

Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2016-09, Vol.9 (9), p.4247-4256
Main Authors: Marinoni, Andrea, Plaza, Antonio, Gamba, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3
cites cdi_FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3
container_end_page 4256
container_issue 9
container_start_page 4247
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 9
creator Marinoni, Andrea
Plaza, Antonio
Gamba, Paolo
description Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a thorough and reliable characterization of the materials in a scene. In this paper, this task is achieved by inverting a new model for nonlinear hyperspectral mixtures. Specifically, we show that it is possible to effectively unmix hyperspectral data by assuming a harmonic description of the higher order nonlinear combination of the endmembers. The rationale for this model is that the harmonic analysis is able to understand and quantify effects that cannot be effectively described by classic polynomial combinations. Although the model is nonlinear, unmixing is performed by solving a linear system thanks to the recently proposed polytope decomposition (POD). Experimental results show that inverting this model leads to improved performances with respect to the state of the art in terms of endmember abundance estimation both over synthetic and real datasets.
doi_str_mv 10.1109/JSTARS.2016.2514740
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1831010742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7399695</ieee_id><sourcerecordid>4223969951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKe_YC8FnztzkzRNHseYVtkU3PYc0vZGMra2ph1s_96ODp8OXM53LnyETIBOAah--VhvZt_rKaMgpywBkQp6Q0YMEogh4cktGYHmOgZBxT15aNsdpZKlmo9IltlwqCtfRCt_6o4Bo1Vd4t5XP5GrQ7Rwzhceqy76rKv-ijZE2bnB0DZYdMHuo2118Ke-_kjunN23-HTNMdm-LjbzLF5-vb3PZ8u44JJ3sVBSaJmUUDqpSleiEMipyvM0QWsVKI3gdOFyZ_ssBQVXaGVlyRTDXCMfk-dhtwn17xHbzuzqY6j6lwYUBwo0Faxv8aFVhLptAzrTBH-w4WyAmosyMygzF2XmqqynJgPlEfGfSLnWUif8D_RsaTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831010742</pqid></control><display><type>article</type><title>Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing</title><source>Alma/SFX Local Collection</source><creator>Marinoni, Andrea ; Plaza, Antonio ; Gamba, Paolo</creator><creatorcontrib>Marinoni, Andrea ; Plaza, Antonio ; Gamba, Paolo</creatorcontrib><description>Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a thorough and reliable characterization of the materials in a scene. In this paper, this task is achieved by inverting a new model for nonlinear hyperspectral mixtures. Specifically, we show that it is possible to effectively unmix hyperspectral data by assuming a harmonic description of the higher order nonlinear combination of the endmembers. The rationale for this model is that the harmonic analysis is able to understand and quantify effects that cannot be effectively described by classic polynomial combinations. Although the model is nonlinear, unmixing is performed by solving a linear system thanks to the recently proposed polytope decomposition (POD). Experimental results show that inverting this model leads to improved performances with respect to the state of the art in terms of endmember abundance estimation both over synthetic and real datasets.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2016.2514740</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Harmonic analysis ; Harmonic mixture model ; Hyperspectral imaging ; Microscopy ; Mixture models ; nonlinear hyperspectral unmixing ; polytope decomposition ; Reliability</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2016-09, Vol.9 (9), p.4247-4256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3</citedby><cites>FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Marinoni, Andrea</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><creatorcontrib>Gamba, Paolo</creatorcontrib><title>Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a thorough and reliable characterization of the materials in a scene. In this paper, this task is achieved by inverting a new model for nonlinear hyperspectral mixtures. Specifically, we show that it is possible to effectively unmix hyperspectral data by assuming a harmonic description of the higher order nonlinear combination of the endmembers. The rationale for this model is that the harmonic analysis is able to understand and quantify effects that cannot be effectively described by classic polynomial combinations. Although the model is nonlinear, unmixing is performed by solving a linear system thanks to the recently proposed polytope decomposition (POD). Experimental results show that inverting this model leads to improved performances with respect to the state of the art in terms of endmember abundance estimation both over synthetic and real datasets.</description><subject>Analytical models</subject><subject>Harmonic analysis</subject><subject>Harmonic mixture model</subject><subject>Hyperspectral imaging</subject><subject>Microscopy</subject><subject>Mixture models</subject><subject>nonlinear hyperspectral unmixing</subject><subject>polytope decomposition</subject><subject>Reliability</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKe_YC8FnztzkzRNHseYVtkU3PYc0vZGMra2ph1s_96ODp8OXM53LnyETIBOAah--VhvZt_rKaMgpywBkQp6Q0YMEogh4cktGYHmOgZBxT15aNsdpZKlmo9IltlwqCtfRCt_6o4Bo1Vd4t5XP5GrQ7Rwzhceqy76rKv-ijZE2bnB0DZYdMHuo2118Ke-_kjunN23-HTNMdm-LjbzLF5-vb3PZ8u44JJ3sVBSaJmUUDqpSleiEMipyvM0QWsVKI3gdOFyZ_ssBQVXaGVlyRTDXCMfk-dhtwn17xHbzuzqY6j6lwYUBwo0Faxv8aFVhLptAzrTBH-w4WyAmosyMygzF2XmqqynJgPlEfGfSLnWUif8D_RsaTs</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Marinoni, Andrea</creator><creator>Plaza, Antonio</creator><creator>Gamba, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing</title><author>Marinoni, Andrea ; Plaza, Antonio ; Gamba, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical models</topic><topic>Harmonic analysis</topic><topic>Harmonic mixture model</topic><topic>Hyperspectral imaging</topic><topic>Microscopy</topic><topic>Mixture models</topic><topic>nonlinear hyperspectral unmixing</topic><topic>polytope decomposition</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinoni, Andrea</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><creatorcontrib>Gamba, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinoni, Andrea</au><au>Plaza, Antonio</au><au>Gamba, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2016-09</date><risdate>2016</risdate><volume>9</volume><issue>9</issue><spage>4247</spage><epage>4256</epage><pages>4247-4256</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a thorough and reliable characterization of the materials in a scene. In this paper, this task is achieved by inverting a new model for nonlinear hyperspectral mixtures. Specifically, we show that it is possible to effectively unmix hyperspectral data by assuming a harmonic description of the higher order nonlinear combination of the endmembers. The rationale for this model is that the harmonic analysis is able to understand and quantify effects that cannot be effectively described by classic polynomial combinations. Although the model is nonlinear, unmixing is performed by solving a linear system thanks to the recently proposed polytope decomposition (POD). Experimental results show that inverting this model leads to improved performances with respect to the state of the art in terms of endmember abundance estimation both over synthetic and real datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2016.2514740</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2016-09, Vol.9 (9), p.4247-4256
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_1831010742
source Alma/SFX Local Collection
subjects Analytical models
Harmonic analysis
Harmonic mixture model
Hyperspectral imaging
Microscopy
Mixture models
nonlinear hyperspectral unmixing
polytope decomposition
Reliability
title Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonic%20Mixture%20Modeling%20for%20Efficient%20Nonlinear%20Hyperspectral%20Unmixing&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Marinoni,%20Andrea&rft.date=2016-09&rft.volume=9&rft.issue=9&rft.spage=4247&rft.epage=4256&rft.pages=4247-4256&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2016.2514740&rft_dat=%3Cproquest_ieee_%3E4223969951%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1831010742&rft_id=info:pmid/&rft_ieee_id=7399695&rfr_iscdi=true