Loading…
Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing
Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2016-09, Vol.9 (9), p.4247-4256 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3 |
container_end_page | 4256 |
container_issue | 9 |
container_start_page | 4247 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 9 |
creator | Marinoni, Andrea Plaza, Antonio Gamba, Paolo |
description | Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a thorough and reliable characterization of the materials in a scene. In this paper, this task is achieved by inverting a new model for nonlinear hyperspectral mixtures. Specifically, we show that it is possible to effectively unmix hyperspectral data by assuming a harmonic description of the higher order nonlinear combination of the endmembers. The rationale for this model is that the harmonic analysis is able to understand and quantify effects that cannot be effectively described by classic polynomial combinations. Although the model is nonlinear, unmixing is performed by solving a linear system thanks to the recently proposed polytope decomposition (POD). Experimental results show that inverting this model leads to improved performances with respect to the state of the art in terms of endmember abundance estimation both over synthetic and real datasets. |
doi_str_mv | 10.1109/JSTARS.2016.2514740 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1831010742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7399695</ieee_id><sourcerecordid>4223969951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKe_YC8FnztzkzRNHseYVtkU3PYc0vZGMra2ph1s_96ODp8OXM53LnyETIBOAah--VhvZt_rKaMgpywBkQp6Q0YMEogh4cktGYHmOgZBxT15aNsdpZKlmo9IltlwqCtfRCt_6o4Bo1Vd4t5XP5GrQ7Rwzhceqy76rKv-ijZE2bnB0DZYdMHuo2118Ke-_kjunN23-HTNMdm-LjbzLF5-vb3PZ8u44JJ3sVBSaJmUUDqpSleiEMipyvM0QWsVKI3gdOFyZ_ssBQVXaGVlyRTDXCMfk-dhtwn17xHbzuzqY6j6lwYUBwo0Faxv8aFVhLptAzrTBH-w4WyAmosyMygzF2XmqqynJgPlEfGfSLnWUif8D_RsaTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831010742</pqid></control><display><type>article</type><title>Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing</title><source>Alma/SFX Local Collection</source><creator>Marinoni, Andrea ; Plaza, Antonio ; Gamba, Paolo</creator><creatorcontrib>Marinoni, Andrea ; Plaza, Antonio ; Gamba, Paolo</creatorcontrib><description>Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a thorough and reliable characterization of the materials in a scene. In this paper, this task is achieved by inverting a new model for nonlinear hyperspectral mixtures. Specifically, we show that it is possible to effectively unmix hyperspectral data by assuming a harmonic description of the higher order nonlinear combination of the endmembers. The rationale for this model is that the harmonic analysis is able to understand and quantify effects that cannot be effectively described by classic polynomial combinations. Although the model is nonlinear, unmixing is performed by solving a linear system thanks to the recently proposed polytope decomposition (POD). Experimental results show that inverting this model leads to improved performances with respect to the state of the art in terms of endmember abundance estimation both over synthetic and real datasets.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2016.2514740</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Harmonic analysis ; Harmonic mixture model ; Hyperspectral imaging ; Microscopy ; Mixture models ; nonlinear hyperspectral unmixing ; polytope decomposition ; Reliability</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2016-09, Vol.9 (9), p.4247-4256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3</citedby><cites>FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Marinoni, Andrea</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><creatorcontrib>Gamba, Paolo</creatorcontrib><title>Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a thorough and reliable characterization of the materials in a scene. In this paper, this task is achieved by inverting a new model for nonlinear hyperspectral mixtures. Specifically, we show that it is possible to effectively unmix hyperspectral data by assuming a harmonic description of the higher order nonlinear combination of the endmembers. The rationale for this model is that the harmonic analysis is able to understand and quantify effects that cannot be effectively described by classic polynomial combinations. Although the model is nonlinear, unmixing is performed by solving a linear system thanks to the recently proposed polytope decomposition (POD). Experimental results show that inverting this model leads to improved performances with respect to the state of the art in terms of endmember abundance estimation both over synthetic and real datasets.</description><subject>Analytical models</subject><subject>Harmonic analysis</subject><subject>Harmonic mixture model</subject><subject>Hyperspectral imaging</subject><subject>Microscopy</subject><subject>Mixture models</subject><subject>nonlinear hyperspectral unmixing</subject><subject>polytope decomposition</subject><subject>Reliability</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKe_YC8FnztzkzRNHseYVtkU3PYc0vZGMra2ph1s_96ODp8OXM53LnyETIBOAah--VhvZt_rKaMgpywBkQp6Q0YMEogh4cktGYHmOgZBxT15aNsdpZKlmo9IltlwqCtfRCt_6o4Bo1Vd4t5XP5GrQ7Rwzhceqy76rKv-ijZE2bnB0DZYdMHuo2118Ke-_kjunN23-HTNMdm-LjbzLF5-vb3PZ8u44JJ3sVBSaJmUUDqpSleiEMipyvM0QWsVKI3gdOFyZ_ssBQVXaGVlyRTDXCMfk-dhtwn17xHbzuzqY6j6lwYUBwo0Faxv8aFVhLptAzrTBH-w4WyAmosyMygzF2XmqqynJgPlEfGfSLnWUif8D_RsaTs</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Marinoni, Andrea</creator><creator>Plaza, Antonio</creator><creator>Gamba, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing</title><author>Marinoni, Andrea ; Plaza, Antonio ; Gamba, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical models</topic><topic>Harmonic analysis</topic><topic>Harmonic mixture model</topic><topic>Hyperspectral imaging</topic><topic>Microscopy</topic><topic>Mixture models</topic><topic>nonlinear hyperspectral unmixing</topic><topic>polytope decomposition</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinoni, Andrea</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><creatorcontrib>Gamba, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinoni, Andrea</au><au>Plaza, Antonio</au><au>Gamba, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2016-09</date><risdate>2016</risdate><volume>9</volume><issue>9</issue><spage>4247</spage><epage>4256</epage><pages>4247-4256</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Higher order nonlinear material mixtures provide a good model to explain the effects of physical-chemical phenomena on hyperspectral remote sensing measurements. Therefore, inverting nonlinear effects starting from the measured spectral values is a very challenging yet fundamental task to provide a thorough and reliable characterization of the materials in a scene. In this paper, this task is achieved by inverting a new model for nonlinear hyperspectral mixtures. Specifically, we show that it is possible to effectively unmix hyperspectral data by assuming a harmonic description of the higher order nonlinear combination of the endmembers. The rationale for this model is that the harmonic analysis is able to understand and quantify effects that cannot be effectively described by classic polynomial combinations. Although the model is nonlinear, unmixing is performed by solving a linear system thanks to the recently proposed polytope decomposition (POD). Experimental results show that inverting this model leads to improved performances with respect to the state of the art in terms of endmember abundance estimation both over synthetic and real datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2016.2514740</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2016-09, Vol.9 (9), p.4247-4256 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_1831010742 |
source | Alma/SFX Local Collection |
subjects | Analytical models Harmonic analysis Harmonic mixture model Hyperspectral imaging Microscopy Mixture models nonlinear hyperspectral unmixing polytope decomposition Reliability |
title | Harmonic Mixture Modeling for Efficient Nonlinear Hyperspectral Unmixing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonic%20Mixture%20Modeling%20for%20Efficient%20Nonlinear%20Hyperspectral%20Unmixing&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Marinoni,%20Andrea&rft.date=2016-09&rft.volume=9&rft.issue=9&rft.spage=4247&rft.epage=4256&rft.pages=4247-4256&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2016.2514740&rft_dat=%3Cproquest_ieee_%3E4223969951%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-4864965d1df68dfde44e308bb75eaa8189e1f9cfbfa1f9d401fc98a6d282eb9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1831010742&rft_id=info:pmid/&rft_ieee_id=7399695&rfr_iscdi=true |