Loading…
Coordination Control of SMR-Based NSSS Modules Integrated by Feedwater Distribution
Due to its strong safety feature, the small modular reactor whose electric output is no more than 300MWe has been seen as a promising trend in nuclear engineering. By adopting multi-modular scheme, i.e. the superheated steam flows produced by multiple SMR-based nuclear heating system (NSSS) modules...
Saved in:
Published in: | IEEE transactions on nuclear science 2016-10, Vol.63 (5), p.2682-2690 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to its strong safety feature, the small modular reactor whose electric output is no more than 300MWe has been seen as a promising trend in nuclear engineering. By adopting multi-modular scheme, i.e. the superheated steam flows produced by multiple SMR-based nuclear heating system (NSSS) modules are combined to drive a common thermal load, the strong safety feature of a SMR can be applied to large-scale nuclear plants. To improve the economic competitiveness, it is meaningful to integrate multiple NSSS modules by the scheme of feedwater distribution, i.e. sharing a common pump and distributing feedwater by adjusting the opening of regulating valve of each module. The module coordination control of multiple SMR-based NSSS modules coupled by feedwater distribution is essentially the flowrate-pressure control of the common secondary-loop fluid flow network (FFN). In this paper, the nonlinear differential-algebraic model for the FFNs with a single feedwater pump is first given. A novel distributed adaptive flowrate-pressure control is proposed, which is then applied to realize the module coordination. Numerical simulation results in the case of coordination control of two MHTGR-based NSSS modules integrated by feedwater distribution scheme show the feasibility as well as the satisfactory transient performance of this newly-built coordination control law. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2016.2601342 |