Loading…
Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)
Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2009-07, Vol.47, p.S145-S145 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | S145 |
container_issue | |
container_start_page | S145 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 47 |
creator | Ramírez, R.R. Baillet, S. |
description | Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL should be preferred for high SNR data over smSBL and mMP, but that the latter algorithms provide fast alternatives for low SNR data. [...]accurate estimation of distributed sources may require data denoising (e.g., SSS, ICA, etc) and accurate forward models. |
doi_str_mv | 10.1016/S1053-8119(09)71471-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1833155101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909714715</els_id><sourcerecordid>4231271391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1301-cdbf3aacb3e194842f67541fffcd073e9ed4eaab61b308a06c09f1522949612a3</originalsourceid><addsrcrecordid>eNqFUV2P0zAQjBBIHAc_AckSL61EwJvEScwL4iq-pFacdPBsOc6m9SmJi9dB3N_mF2C3lXjkaVfr2ZnxTpa9BP4GONRv74CLMm8B5IrLdQNVA7l4lF0BlyKXoikep_4CeZo9I7rnnEuo2qvsz24Zg_VIblyCdTPbo-uRrGE3-iFWPTM97p234TARG5xnSMFOOth5z8IBGR1jr0eGvwPOgem5Z3TQR2RuYL2l4G23BIxDt3iD9I7t3ByQbbQfHSM7LaNOusSMm47aJ9opWSKjxxO7J_znZUTt54RZTXc32_VrRvhzibrJQZqwFV0ekpGdDuaQ0LeLp8WGuLW7XT_Pngx6JHxxqdfZj08fv2--5Ntvn79uPmxzAyWH3PTdUGptuhJBVm1VDHUjKhiGwfS8KVFiX6HWXQ1dyVvNa8PlAKIoZCVrKHR5nb068x69iyYpqPt4gzlKKmjLEoSI6UWUOKOMd0QeB3X08b7-QQFXKV51ilel7BSX6hSvEnHv_XkP4xd-WfSKjMXZYB_TNEH1zv6H4S-wULHz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1833155101</pqid></control><display><type>article</type><title>Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)</title><source>ScienceDirect Freedom Collection</source><creator>Ramírez, R.R. ; Baillet, S.</creator><creatorcontrib>Ramírez, R.R. ; Baillet, S.</creatorcontrib><description>Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL should be preferred for high SNR data over smSBL and mMP, but that the latter algorithms provide fast alternatives for low SNR data. [...]accurate estimation of distributed sources may require data denoising (e.g., SSS, ICA, etc) and accurate forward models.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/S1053-8119(09)71471-5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algorithms ; Estimates ; Methods ; Noise</subject><ispartof>NeuroImage (Orlando, Fla.), 2009-07, Vol.47, p.S145-S145</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jul 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramírez, R.R.</creatorcontrib><creatorcontrib>Baillet, S.</creatorcontrib><title>Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)</title><title>NeuroImage (Orlando, Fla.)</title><description>Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL should be preferred for high SNR data over smSBL and mMP, but that the latter algorithms provide fast alternatives for low SNR data. [...]accurate estimation of distributed sources may require data denoising (e.g., SSS, ICA, etc) and accurate forward models.</description><subject>Algorithms</subject><subject>Estimates</subject><subject>Methods</subject><subject>Noise</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUV2P0zAQjBBIHAc_AckSL61EwJvEScwL4iq-pFacdPBsOc6m9SmJi9dB3N_mF2C3lXjkaVfr2ZnxTpa9BP4GONRv74CLMm8B5IrLdQNVA7l4lF0BlyKXoikep_4CeZo9I7rnnEuo2qvsz24Zg_VIblyCdTPbo-uRrGE3-iFWPTM97p234TARG5xnSMFOOth5z8IBGR1jr0eGvwPOgem5Z3TQR2RuYL2l4G23BIxDt3iD9I7t3ByQbbQfHSM7LaNOusSMm47aJ9opWSKjxxO7J_znZUTt54RZTXc32_VrRvhzibrJQZqwFV0ekpGdDuaQ0LeLp8WGuLW7XT_Pngx6JHxxqdfZj08fv2--5Ntvn79uPmxzAyWH3PTdUGptuhJBVm1VDHUjKhiGwfS8KVFiX6HWXQ1dyVvNa8PlAKIoZCVrKHR5nb068x69iyYpqPt4gzlKKmjLEoSI6UWUOKOMd0QeB3X08b7-QQFXKV51ilel7BSX6hSvEnHv_XkP4xd-WfSKjMXZYB_TNEH1zv6H4S-wULHz</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Ramírez, R.R.</creator><creator>Baillet, S.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20090701</creationdate><title>Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)</title><author>Ramírez, R.R. ; Baillet, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1301-cdbf3aacb3e194842f67541fffcd073e9ed4eaab61b308a06c09f1522949612a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Estimates</topic><topic>Methods</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez, R.R.</creatorcontrib><creatorcontrib>Baillet, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez, R.R.</au><au>Baillet, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>47</volume><spage>S145</spage><epage>S145</epage><pages>S145-S145</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL should be preferred for high SNR data over smSBL and mMP, but that the latter algorithms provide fast alternatives for low SNR data. [...]accurate estimation of distributed sources may require data denoising (e.g., SSS, ICA, etc) and accurate forward models.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/S1053-8119(09)71471-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2009-07, Vol.47, p.S145-S145 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_journals_1833155101 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Estimates Methods Noise |
title | Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiresolution%20geodesic%20Bayesian%20algorithms%20for%20estimating%20the%20spatial%20extent%20and%20shape%20of%20distributed%20sources:%20Monte%20Carlo%20simulations%20comparing%20multiscale%20sparse%20Bayesian%20learning%20(mSBL),%20sequential%20mSBL%20(smSBL),%20and%20Matching%20Pursuit%20(mMP)&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Ram%C3%ADrez,%20R.R.&rft.date=2009-07-01&rft.volume=47&rft.spage=S145&rft.epage=S145&rft.pages=S145-S145&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/S1053-8119(09)71471-5&rft_dat=%3Cproquest_cross%3E4231271391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1301-cdbf3aacb3e194842f67541fffcd073e9ed4eaab61b308a06c09f1522949612a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1833155101&rft_id=info:pmid/&rfr_iscdi=true |