Loading…

Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)

Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2009-07, Vol.47, p.S145-S145
Main Authors: Ramírez, R.R., Baillet, S.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page S145
container_issue
container_start_page S145
container_title NeuroImage (Orlando, Fla.)
container_volume 47
creator Ramírez, R.R.
Baillet, S.
description Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL should be preferred for high SNR data over smSBL and mMP, but that the latter algorithms provide fast alternatives for low SNR data. [...]accurate estimation of distributed sources may require data denoising (e.g., SSS, ICA, etc) and accurate forward models.
doi_str_mv 10.1016/S1053-8119(09)71471-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1833155101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909714715</els_id><sourcerecordid>4231271391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1301-cdbf3aacb3e194842f67541fffcd073e9ed4eaab61b308a06c09f1522949612a3</originalsourceid><addsrcrecordid>eNqFUV2P0zAQjBBIHAc_AckSL61EwJvEScwL4iq-pFacdPBsOc6m9SmJi9dB3N_mF2C3lXjkaVfr2ZnxTpa9BP4GONRv74CLMm8B5IrLdQNVA7l4lF0BlyKXoikep_4CeZo9I7rnnEuo2qvsz24Zg_VIblyCdTPbo-uRrGE3-iFWPTM97p234TARG5xnSMFOOth5z8IBGR1jr0eGvwPOgem5Z3TQR2RuYL2l4G23BIxDt3iD9I7t3ByQbbQfHSM7LaNOusSMm47aJ9opWSKjxxO7J_znZUTt54RZTXc32_VrRvhzibrJQZqwFV0ekpGdDuaQ0LeLp8WGuLW7XT_Pngx6JHxxqdfZj08fv2--5Ntvn79uPmxzAyWH3PTdUGptuhJBVm1VDHUjKhiGwfS8KVFiX6HWXQ1dyVvNa8PlAKIoZCVrKHR5nb068x69iyYpqPt4gzlKKmjLEoSI6UWUOKOMd0QeB3X08b7-QQFXKV51ilel7BSX6hSvEnHv_XkP4xd-WfSKjMXZYB_TNEH1zv6H4S-wULHz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1833155101</pqid></control><display><type>article</type><title>Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)</title><source>ScienceDirect Freedom Collection</source><creator>Ramírez, R.R. ; Baillet, S.</creator><creatorcontrib>Ramírez, R.R. ; Baillet, S.</creatorcontrib><description>Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL should be preferred for high SNR data over smSBL and mMP, but that the latter algorithms provide fast alternatives for low SNR data. [...]accurate estimation of distributed sources may require data denoising (e.g., SSS, ICA, etc) and accurate forward models.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/S1053-8119(09)71471-5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algorithms ; Estimates ; Methods ; Noise</subject><ispartof>NeuroImage (Orlando, Fla.), 2009-07, Vol.47, p.S145-S145</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jul 1, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ramírez, R.R.</creatorcontrib><creatorcontrib>Baillet, S.</creatorcontrib><title>Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)</title><title>NeuroImage (Orlando, Fla.)</title><description>Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL should be preferred for high SNR data over smSBL and mMP, but that the latter algorithms provide fast alternatives for low SNR data. [...]accurate estimation of distributed sources may require data denoising (e.g., SSS, ICA, etc) and accurate forward models.</description><subject>Algorithms</subject><subject>Estimates</subject><subject>Methods</subject><subject>Noise</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUV2P0zAQjBBIHAc_AckSL61EwJvEScwL4iq-pFacdPBsOc6m9SmJi9dB3N_mF2C3lXjkaVfr2ZnxTpa9BP4GONRv74CLMm8B5IrLdQNVA7l4lF0BlyKXoikep_4CeZo9I7rnnEuo2qvsz24Zg_VIblyCdTPbo-uRrGE3-iFWPTM97p234TARG5xnSMFOOth5z8IBGR1jr0eGvwPOgem5Z3TQR2RuYL2l4G23BIxDt3iD9I7t3ByQbbQfHSM7LaNOusSMm47aJ9opWSKjxxO7J_znZUTt54RZTXc32_VrRvhzibrJQZqwFV0ekpGdDuaQ0LeLp8WGuLW7XT_Pngx6JHxxqdfZj08fv2--5Ntvn79uPmxzAyWH3PTdUGptuhJBVm1VDHUjKhiGwfS8KVFiX6HWXQ1dyVvNa8PlAKIoZCVrKHR5nb068x69iyYpqPt4gzlKKmjLEoSI6UWUOKOMd0QeB3X08b7-QQFXKV51ilel7BSX6hSvEnHv_XkP4xd-WfSKjMXZYB_TNEH1zv6H4S-wULHz</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Ramírez, R.R.</creator><creator>Baillet, S.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20090701</creationdate><title>Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)</title><author>Ramírez, R.R. ; Baillet, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1301-cdbf3aacb3e194842f67541fffcd073e9ed4eaab61b308a06c09f1522949612a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Estimates</topic><topic>Methods</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez, R.R.</creatorcontrib><creatorcontrib>Baillet, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez, R.R.</au><au>Baillet, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>47</volume><spage>S145</spage><epage>S145</epage><pages>S145-S145</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Introduction The source current density distribution generating the electromagnetic signals measured in MEG/EEG is of variable spatial extent and shape. [...]algorithms that can accurately estimate variably distributed sources of arbitrary shapes are needed. Conclusions This study suggests that mSBL should be preferred for high SNR data over smSBL and mMP, but that the latter algorithms provide fast alternatives for low SNR data. [...]accurate estimation of distributed sources may require data denoising (e.g., SSS, ICA, etc) and accurate forward models.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/S1053-8119(09)71471-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2009-07, Vol.47, p.S145-S145
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_journals_1833155101
source ScienceDirect Freedom Collection
subjects Algorithms
Estimates
Methods
Noise
title Multiresolution geodesic Bayesian algorithms for estimating the spatial extent and shape of distributed sources: Monte Carlo simulations comparing multiscale sparse Bayesian learning (mSBL), sequential mSBL (smSBL), and Matching Pursuit (mMP)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiresolution%20geodesic%20Bayesian%20algorithms%20for%20estimating%20the%20spatial%20extent%20and%20shape%20of%20distributed%20sources:%20Monte%20Carlo%20simulations%20comparing%20multiscale%20sparse%20Bayesian%20learning%20(mSBL),%20sequential%20mSBL%20(smSBL),%20and%20Matching%20Pursuit%20(mMP)&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Ram%C3%ADrez,%20R.R.&rft.date=2009-07-01&rft.volume=47&rft.spage=S145&rft.epage=S145&rft.pages=S145-S145&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/S1053-8119(09)71471-5&rft_dat=%3Cproquest_cross%3E4231271391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1301-cdbf3aacb3e194842f67541fffcd073e9ed4eaab61b308a06c09f1522949612a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1833155101&rft_id=info:pmid/&rfr_iscdi=true