Loading…

Structure of pauses in speech in the context of speaker verification and classification of speech type

Statistics of pauses appearing in Polish as a potential source of biometry information for automatic speaker recognition were described. The usage of three main types of acoustic pauses (silent, filled and breath pauses) and syntactic pauses (punctuation marks in speech transcripts) was investigated...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on audio, speech, and music processing speech, and music processing, 2016-11, Vol.2016 (1), p.1, Article 18
Main Authors: Igras-Cybulska, Magdalena, Ziółko, Bartosz, Żelasko, Piotr, Witkowski, Marcin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Statistics of pauses appearing in Polish as a potential source of biometry information for automatic speaker recognition were described. The usage of three main types of acoustic pauses (silent, filled and breath pauses) and syntactic pauses (punctuation marks in speech transcripts) was investigated quantitatively in three types of spontaneous speech (presentations, simultaneous interpretation and radio interviews) and read speech (audio books). Selected parameters of pauses extracted for each speaker separately or for speaker groups were examined statistically to verify usefulness of information on pauses for speaker recognition and speaker profile estimation. Quantity and duration of filled pauses, audible breaths, and correlation between the temporal structure of speech and the syntax structure of the spoken language were the features which characterize speakers most. The experiment of using pauses in speaker biometry system (using Universal Background Model and i-vectors) resulted in 30 % equal error rate. Including pause-related features to the baseline Mel-frequency cepstral coefficient system has not significantly improved its performance. In the experiment with automatic recognition of three types of spontaneous speech, we achieved 78 % accuracy, using GMM classifier. Silent pause-related features allowed distinguishing between read and spontaneous speech by extreme gradient boosting with 75 % accuracy.
ISSN:1687-4722
1687-4714
1687-4722
DOI:10.1186/s13636-016-0096-7