Loading…
Analytical evaluation of the protection offered by sealed tractor cabins during crop pulverization with fenitrothion
The practice of large-scale agriculture requires the use of pesticides in order to maximize production. This activity has gained increasing attention in recent years, especially from rural workers, due to the risks associated with long-term exposure to pesticides. To minimize these risks, personal p...
Saved in:
Published in: | Environmental monitoring and assessment 2016-12, Vol.188 (12), p.660-10, Article 660 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The practice of large-scale agriculture requires the use of pesticides in order to maximize production. This activity has gained increasing attention in recent years, especially from rural workers, due to the risks associated with long-term exposure to pesticides. To minimize these risks, personal protection equipment (e.g., covers, gloves, and goggles) and collective protection equipment (e.g., agricultural tractors with sealed cabins) have been developed. In general, these approaches are intended to reduce the contact of farmers and agricultural machinery operators with the more toxic and stable compounds, an example of which is fenitrothion. In this study, fenitrothion was used as a marker to evaluate the protection afforded inside a sealed tractor cabin. To simulate the pesticide exposure, tests were performed using artificial cotton targets as passive adsorptive agents inside the cabin during the pesticide application. Samples were extracted according to the US Environmental Protection Agency (USEPA) procedure using ultrasonic extraction and as proposed by the Brazilian Standard for Solid Waste Classification (NBR 10004). The extracts were analyzed by high-performance liquid chromatography with diode array detection (HPLC-DAD). The chromatographic method was optimized using a factorial design. The combined results indicated that the best conditions were achieved using a mobile phase with a water/acetonitrile ratio of 35:65, a column temperature of 40 °C, and a flow rate of 1.0 mL/min, with a total analysis time of |
---|---|
ISSN: | 0167-6369 1573-2959 |
DOI: | 10.1007/s10661-016-5632-5 |