Loading…
Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering
The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and s...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2016-12, Vol.21 (6), p.2793-2804 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83 |
container_end_page | 2804 |
container_issue | 6 |
container_start_page | 2793 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 21 |
creator | de J Mateo Sanguino, Tomas Ponce Gomez, Francisco |
description | The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and simple adaptive strategy to increase the efficiency and drastically reduce the computational effort in particle filters (PFs). The purpose of the adaptive approach (dispersion-based adaptive particle filter - DAPF) is to provide higher number of particles during the initial searching state (when the localization presents greater uncertainty) and fewer particles during the subsequent state (when the localization exhibits less uncertainty). With the aim of studying the dynamical PF behavior regarding others and putting the proposed algorithm into practice, we designed a methodology based on different target applications and a Kinect sensor. The various experiments conducted for both color tracking and mobile robot localization problems served to demonstrate that the DAPF algorithm can be further generalized. As a result, the DAPF approach significantly improved the computational performance over two well-known filtering strategies: 1) the classical PF with fixed particle set sizes, and 2) the adaptive technique named Kullback-Leiber distance. |
doi_str_mv | 10.1109/TMECH.2016.2531629 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1839147564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7412763</ieee_id><sourcerecordid>1839147564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83</originalsourceid><addsrcrecordid>eNo9kF9PwjAUxRejiYh-AX1p4vOw_7c-EgJigsHIjL41XddhcazYFQ1-eosQX-69D-d3bs5JkmsEBwhBcVc8jkfTAYaIDzAjiGNxkvSQoCiFiL6dxhvmJKWUsPPkoutWEEKKIOoly8J9K1-BhV1vGgMWwatgljtQOw_mm2DXqgGFV_rDtkug2grMnFaN_VHBuha4Gjy70oUOvNrwDoaVisiXAU_KB6uj38Q2wfjIXiZntWo6c3Xc_eRlMi5G03Q2v38YDWepxoKFtGRMsdwwA6HiucjioJwxoUvMNCEalnWVI4FqWAlGs4pprUxMSxXHnOmc9JPbg-_Gu8-t6YJcua1v40uJciIQzRinUYUPKu1d13lTy42PUf1OIij3hcq_QuW-UHksNEI3B8gaY_6BjCKccUJ-AVjEchU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1839147564</pqid></control><display><type>article</type><title>Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering</title><source>IEEE Xplore (Online service)</source><creator>de J Mateo Sanguino, Tomas ; Ponce Gomez, Francisco</creator><creatorcontrib>de J Mateo Sanguino, Tomas ; Ponce Gomez, Francisco</creatorcontrib><description>The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and simple adaptive strategy to increase the efficiency and drastically reduce the computational effort in particle filters (PFs). The purpose of the adaptive approach (dispersion-based adaptive particle filter - DAPF) is to provide higher number of particles during the initial searching state (when the localization presents greater uncertainty) and fewer particles during the subsequent state (when the localization exhibits less uncertainty). With the aim of studying the dynamical PF behavior regarding others and putting the proposed algorithm into practice, we designed a methodology based on different target applications and a Kinect sensor. The various experiments conducted for both color tracking and mobile robot localization problems served to demonstrate that the DAPF algorithm can be further generalized. As a result, the DAPF approach significantly improved the computational performance over two well-known filtering strategies: 1) the classical PF with fixed particle set sizes, and 2) the adaptive technique named Kullback-Leiber distance.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2016.2531629</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Adaptive systems ; Algorithms ; Computing costs ; Effectiveness ; global localization ; IEEE transactions ; Kinect ; Localization ; Mechatronics ; mobile robotics ; Mobile robots ; object tracking ; Optimization ; Particle filters ; Robot sensing systems ; Robots ; System effectiveness ; Tracking ; Uncertainty</subject><ispartof>IEEE/ASME transactions on mechatronics, 2016-12, Vol.21 (6), p.2793-2804</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83</citedby><cites>FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83</cites><orcidid>0000-0002-9387-3892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7412763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>de J Mateo Sanguino, Tomas</creatorcontrib><creatorcontrib>Ponce Gomez, Francisco</creatorcontrib><title>Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and simple adaptive strategy to increase the efficiency and drastically reduce the computational effort in particle filters (PFs). The purpose of the adaptive approach (dispersion-based adaptive particle filter - DAPF) is to provide higher number of particles during the initial searching state (when the localization presents greater uncertainty) and fewer particles during the subsequent state (when the localization exhibits less uncertainty). With the aim of studying the dynamical PF behavior regarding others and putting the proposed algorithm into practice, we designed a methodology based on different target applications and a Kinect sensor. The various experiments conducted for both color tracking and mobile robot localization problems served to demonstrate that the DAPF algorithm can be further generalized. As a result, the DAPF approach significantly improved the computational performance over two well-known filtering strategies: 1) the classical PF with fixed particle set sizes, and 2) the adaptive technique named Kullback-Leiber distance.</description><subject>Adaptive filters</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Computing costs</subject><subject>Effectiveness</subject><subject>global localization</subject><subject>IEEE transactions</subject><subject>Kinect</subject><subject>Localization</subject><subject>Mechatronics</subject><subject>mobile robotics</subject><subject>Mobile robots</subject><subject>object tracking</subject><subject>Optimization</subject><subject>Particle filters</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>System effectiveness</subject><subject>Tracking</subject><subject>Uncertainty</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kF9PwjAUxRejiYh-AX1p4vOw_7c-EgJigsHIjL41XddhcazYFQ1-eosQX-69D-d3bs5JkmsEBwhBcVc8jkfTAYaIDzAjiGNxkvSQoCiFiL6dxhvmJKWUsPPkoutWEEKKIOoly8J9K1-BhV1vGgMWwatgljtQOw_mm2DXqgGFV_rDtkug2grMnFaN_VHBuha4Gjy70oUOvNrwDoaVisiXAU_KB6uj38Q2wfjIXiZntWo6c3Xc_eRlMi5G03Q2v38YDWepxoKFtGRMsdwwA6HiucjioJwxoUvMNCEalnWVI4FqWAlGs4pprUxMSxXHnOmc9JPbg-_Gu8-t6YJcua1v40uJciIQzRinUYUPKu1d13lTy42PUf1OIij3hcq_QuW-UHksNEI3B8gaY_6BjCKccUJ-AVjEchU</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>de J Mateo Sanguino, Tomas</creator><creator>Ponce Gomez, Francisco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9387-3892</orcidid></search><sort><creationdate>201612</creationdate><title>Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering</title><author>de J Mateo Sanguino, Tomas ; Ponce Gomez, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive filters</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Computing costs</topic><topic>Effectiveness</topic><topic>global localization</topic><topic>IEEE transactions</topic><topic>Kinect</topic><topic>Localization</topic><topic>Mechatronics</topic><topic>mobile robotics</topic><topic>Mobile robots</topic><topic>object tracking</topic><topic>Optimization</topic><topic>Particle filters</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>System effectiveness</topic><topic>Tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de J Mateo Sanguino, Tomas</creatorcontrib><creatorcontrib>Ponce Gomez, Francisco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de J Mateo Sanguino, Tomas</au><au>Ponce Gomez, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2016-12</date><risdate>2016</risdate><volume>21</volume><issue>6</issue><spage>2793</spage><epage>2804</epage><pages>2793-2804</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and simple adaptive strategy to increase the efficiency and drastically reduce the computational effort in particle filters (PFs). The purpose of the adaptive approach (dispersion-based adaptive particle filter - DAPF) is to provide higher number of particles during the initial searching state (when the localization presents greater uncertainty) and fewer particles during the subsequent state (when the localization exhibits less uncertainty). With the aim of studying the dynamical PF behavior regarding others and putting the proposed algorithm into practice, we designed a methodology based on different target applications and a Kinect sensor. The various experiments conducted for both color tracking and mobile robot localization problems served to demonstrate that the DAPF algorithm can be further generalized. As a result, the DAPF approach significantly improved the computational performance over two well-known filtering strategies: 1) the classical PF with fixed particle set sizes, and 2) the adaptive technique named Kullback-Leiber distance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2016.2531629</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9387-3892</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2016-12, Vol.21 (6), p.2793-2804 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_1839147564 |
source | IEEE Xplore (Online service) |
subjects | Adaptive filters Adaptive systems Algorithms Computing costs Effectiveness global localization IEEE transactions Kinect Localization Mechatronics mobile robotics Mobile robots object tracking Optimization Particle filters Robot sensing systems Robots System effectiveness Tracking Uncertainty |
title | Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Simple%20Strategy%20for%20Optimal%20Tracking%20and%20Localization%20of%20Robots%20With%20Adaptive%20Particle%20Filtering&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=de%20J%20Mateo%20Sanguino,%20Tomas&rft.date=2016-12&rft.volume=21&rft.issue=6&rft.spage=2793&rft.epage=2804&rft.pages=2793-2804&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2016.2531629&rft_dat=%3Cproquest_cross%3E1839147564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1839147564&rft_id=info:pmid/&rft_ieee_id=7412763&rfr_iscdi=true |