Loading…

Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering

The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2016-12, Vol.21 (6), p.2793-2804
Main Authors: de J Mateo Sanguino, Tomas, Ponce Gomez, Francisco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83
cites cdi_FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83
container_end_page 2804
container_issue 6
container_start_page 2793
container_title IEEE/ASME transactions on mechatronics
container_volume 21
creator de J Mateo Sanguino, Tomas
Ponce Gomez, Francisco
description The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and simple adaptive strategy to increase the efficiency and drastically reduce the computational effort in particle filters (PFs). The purpose of the adaptive approach (dispersion-based adaptive particle filter - DAPF) is to provide higher number of particles during the initial searching state (when the localization presents greater uncertainty) and fewer particles during the subsequent state (when the localization exhibits less uncertainty). With the aim of studying the dynamical PF behavior regarding others and putting the proposed algorithm into practice, we designed a methodology based on different target applications and a Kinect sensor. The various experiments conducted for both color tracking and mobile robot localization problems served to demonstrate that the DAPF algorithm can be further generalized. As a result, the DAPF approach significantly improved the computational performance over two well-known filtering strategies: 1) the classical PF with fixed particle set sizes, and 2) the adaptive technique named Kullback-Leiber distance.
doi_str_mv 10.1109/TMECH.2016.2531629
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1839147564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7412763</ieee_id><sourcerecordid>1839147564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83</originalsourceid><addsrcrecordid>eNo9kF9PwjAUxRejiYh-AX1p4vOw_7c-EgJigsHIjL41XddhcazYFQ1-eosQX-69D-d3bs5JkmsEBwhBcVc8jkfTAYaIDzAjiGNxkvSQoCiFiL6dxhvmJKWUsPPkoutWEEKKIOoly8J9K1-BhV1vGgMWwatgljtQOw_mm2DXqgGFV_rDtkug2grMnFaN_VHBuha4Gjy70oUOvNrwDoaVisiXAU_KB6uj38Q2wfjIXiZntWo6c3Xc_eRlMi5G03Q2v38YDWepxoKFtGRMsdwwA6HiucjioJwxoUvMNCEalnWVI4FqWAlGs4pprUxMSxXHnOmc9JPbg-_Gu8-t6YJcua1v40uJciIQzRinUYUPKu1d13lTy42PUf1OIij3hcq_QuW-UHksNEI3B8gaY_6BjCKccUJ-AVjEchU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1839147564</pqid></control><display><type>article</type><title>Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering</title><source>IEEE Xplore (Online service)</source><creator>de J Mateo Sanguino, Tomas ; Ponce Gomez, Francisco</creator><creatorcontrib>de J Mateo Sanguino, Tomas ; Ponce Gomez, Francisco</creatorcontrib><description>The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and simple adaptive strategy to increase the efficiency and drastically reduce the computational effort in particle filters (PFs). The purpose of the adaptive approach (dispersion-based adaptive particle filter - DAPF) is to provide higher number of particles during the initial searching state (when the localization presents greater uncertainty) and fewer particles during the subsequent state (when the localization exhibits less uncertainty). With the aim of studying the dynamical PF behavior regarding others and putting the proposed algorithm into practice, we designed a methodology based on different target applications and a Kinect sensor. The various experiments conducted for both color tracking and mobile robot localization problems served to demonstrate that the DAPF algorithm can be further generalized. As a result, the DAPF approach significantly improved the computational performance over two well-known filtering strategies: 1) the classical PF with fixed particle set sizes, and 2) the adaptive technique named Kullback-Leiber distance.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2016.2531629</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Adaptive systems ; Algorithms ; Computing costs ; Effectiveness ; global localization ; IEEE transactions ; Kinect ; Localization ; Mechatronics ; mobile robotics ; Mobile robots ; object tracking ; Optimization ; Particle filters ; Robot sensing systems ; Robots ; System effectiveness ; Tracking ; Uncertainty</subject><ispartof>IEEE/ASME transactions on mechatronics, 2016-12, Vol.21 (6), p.2793-2804</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83</citedby><cites>FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83</cites><orcidid>0000-0002-9387-3892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7412763$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>de J Mateo Sanguino, Tomas</creatorcontrib><creatorcontrib>Ponce Gomez, Francisco</creatorcontrib><title>Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and simple adaptive strategy to increase the efficiency and drastically reduce the computational effort in particle filters (PFs). The purpose of the adaptive approach (dispersion-based adaptive particle filter - DAPF) is to provide higher number of particles during the initial searching state (when the localization presents greater uncertainty) and fewer particles during the subsequent state (when the localization exhibits less uncertainty). With the aim of studying the dynamical PF behavior regarding others and putting the proposed algorithm into practice, we designed a methodology based on different target applications and a Kinect sensor. The various experiments conducted for both color tracking and mobile robot localization problems served to demonstrate that the DAPF algorithm can be further generalized. As a result, the DAPF approach significantly improved the computational performance over two well-known filtering strategies: 1) the classical PF with fixed particle set sizes, and 2) the adaptive technique named Kullback-Leiber distance.</description><subject>Adaptive filters</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Computing costs</subject><subject>Effectiveness</subject><subject>global localization</subject><subject>IEEE transactions</subject><subject>Kinect</subject><subject>Localization</subject><subject>Mechatronics</subject><subject>mobile robotics</subject><subject>Mobile robots</subject><subject>object tracking</subject><subject>Optimization</subject><subject>Particle filters</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>System effectiveness</subject><subject>Tracking</subject><subject>Uncertainty</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kF9PwjAUxRejiYh-AX1p4vOw_7c-EgJigsHIjL41XddhcazYFQ1-eosQX-69D-d3bs5JkmsEBwhBcVc8jkfTAYaIDzAjiGNxkvSQoCiFiL6dxhvmJKWUsPPkoutWEEKKIOoly8J9K1-BhV1vGgMWwatgljtQOw_mm2DXqgGFV_rDtkug2grMnFaN_VHBuha4Gjy70oUOvNrwDoaVisiXAU_KB6uj38Q2wfjIXiZntWo6c3Xc_eRlMi5G03Q2v38YDWepxoKFtGRMsdwwA6HiucjioJwxoUvMNCEalnWVI4FqWAlGs4pprUxMSxXHnOmc9JPbg-_Gu8-t6YJcua1v40uJciIQzRinUYUPKu1d13lTy42PUf1OIij3hcq_QuW-UHksNEI3B8gaY_6BjCKccUJ-AVjEchU</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>de J Mateo Sanguino, Tomas</creator><creator>Ponce Gomez, Francisco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9387-3892</orcidid></search><sort><creationdate>201612</creationdate><title>Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering</title><author>de J Mateo Sanguino, Tomas ; Ponce Gomez, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive filters</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Computing costs</topic><topic>Effectiveness</topic><topic>global localization</topic><topic>IEEE transactions</topic><topic>Kinect</topic><topic>Localization</topic><topic>Mechatronics</topic><topic>mobile robotics</topic><topic>Mobile robots</topic><topic>object tracking</topic><topic>Optimization</topic><topic>Particle filters</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>System effectiveness</topic><topic>Tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de J Mateo Sanguino, Tomas</creatorcontrib><creatorcontrib>Ponce Gomez, Francisco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de J Mateo Sanguino, Tomas</au><au>Ponce Gomez, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2016-12</date><risdate>2016</risdate><volume>21</volume><issue>6</issue><spage>2793</spage><epage>2804</epage><pages>2793-2804</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>The ability of robotic systems to autonomously understand and/or navigate in uncertain environments is critically dependent on fairly accurate strategies, which are not always optimally achieved due to effectiveness, computational cost, and parameter settings. In this paper, we propose a novel and simple adaptive strategy to increase the efficiency and drastically reduce the computational effort in particle filters (PFs). The purpose of the adaptive approach (dispersion-based adaptive particle filter - DAPF) is to provide higher number of particles during the initial searching state (when the localization presents greater uncertainty) and fewer particles during the subsequent state (when the localization exhibits less uncertainty). With the aim of studying the dynamical PF behavior regarding others and putting the proposed algorithm into practice, we designed a methodology based on different target applications and a Kinect sensor. The various experiments conducted for both color tracking and mobile robot localization problems served to demonstrate that the DAPF algorithm can be further generalized. As a result, the DAPF approach significantly improved the computational performance over two well-known filtering strategies: 1) the classical PF with fixed particle set sizes, and 2) the adaptive technique named Kullback-Leiber distance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2016.2531629</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9387-3892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2016-12, Vol.21 (6), p.2793-2804
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_1839147564
source IEEE Xplore (Online service)
subjects Adaptive filters
Adaptive systems
Algorithms
Computing costs
Effectiveness
global localization
IEEE transactions
Kinect
Localization
Mechatronics
mobile robotics
Mobile robots
object tracking
Optimization
Particle filters
Robot sensing systems
Robots
System effectiveness
Tracking
Uncertainty
title Toward Simple Strategy for Optimal Tracking and Localization of Robots With Adaptive Particle Filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Simple%20Strategy%20for%20Optimal%20Tracking%20and%20Localization%20of%20Robots%20With%20Adaptive%20Particle%20Filtering&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=de%20J%20Mateo%20Sanguino,%20Tomas&rft.date=2016-12&rft.volume=21&rft.issue=6&rft.spage=2793&rft.epage=2804&rft.pages=2793-2804&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2016.2531629&rft_dat=%3Cproquest_cross%3E1839147564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-b55a58e5e00a6897a6846559cb25c33c0bfd8191f0d9547d5ccae6294a6265c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1839147564&rft_id=info:pmid/&rft_ieee_id=7412763&rfr_iscdi=true