Loading…
Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We investigate boundedness of the evolutione^sup itH^ in the sense ofL^sup 2^(^sup 3^[arrow right]L^sup 2^(^sup 3^) as well asL^sup 1^(^sup 3^[arrow right]L^sup ∞^(^sup 3^) for the non-selfadjoint operator... where [mu]>0...
Saved in:
Published in: | Journal d'analyse mathématique (Jerusalem) 2006-12, Vol.99 (1), p.199-248 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-1caa5508b36e456cd22ac2fc1068f6f7f556c1f0e89ae9c1bf2b13abb15c08513 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-1caa5508b36e456cd22ac2fc1068f6f7f556c1f0e89ae9c1bf2b13abb15c08513 |
container_end_page | 248 |
container_issue | 1 |
container_start_page | 199 |
container_title | Journal d'analyse mathématique (Jerusalem) |
container_volume | 99 |
creator | Burak Erdoĝan, M. Schlag, Wilhelm |
description | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We investigate boundedness of the evolutione^sup itH^ in the sense ofL^sup 2^(^sup 3^[arrow right]L^sup 2^(^sup 3^) as well asL^sup 1^(^sup 3^[arrow right]L^sup ∞^(^sup 3^) for the non-selfadjoint operator... where [mu]>0 andV^sub 1^, V^sub 2^ are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave, and the aforementioned bounds are needed in the study of nonlinear asymptotic stability of such standing waves. We derive our results under some natural spectral assumptions (corresponding to a ground state soliton of NLS), see A1)-A4) below, but without imposing any restrictions on the edges±μ of the essential spectrum. Our goal is to develop an "axiomatic approach," which frees the linear theory from any nonlinear context in which it may have arisen.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/BF02789446 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1841848169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4256807891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-1caa5508b36e456cd22ac2fc1068f6f7f556c1f0e89ae9c1bf2b13abb15c08513</originalsourceid><addsrcrecordid>eNpFUNFKwzAUDaLgnL74BQHfhLqkbdLUN51OBwMf1OeSpjddxpbUpBvMP_CH_AF_zJQJwoXLOZx7DvcgdEnJDSWkmNzPSFqIMs_5ERpRxlkiWCaO0YiQlCYFL8gpOgthRQhjZZaO0NeDCR34YHaAIfRmI3sIWDuPX9XS_3w3xrbgsYsa2TsfsLG4XwLuPASwCrDTWOIInJUDlLaZxGNpMZgW7E6ut5Hs8Sd4h8GCb_eDRWM2YINxg5kHuMXz-Tk60XId4OJvj9H77PFt-pwsXp7m07tFojLO-4QqKRkjos445IyrJk2lSrWihAvNdaFZJKkmIEoJpaK1TmuaybqmTBHBaDZGVwffzruPbfy5WrmttzGyoiKPIygvo-r6oFLeheBBV52P5fh9RUk1VF39V539ApZyc0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1841848169</pqid></control><display><type>article</type><title>Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II</title><source>Springer Link</source><creator>Burak Erdoĝan, M. ; Schlag, Wilhelm</creator><creatorcontrib>Burak Erdoĝan, M. ; Schlag, Wilhelm</creatorcontrib><description>(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We investigate boundedness of the evolutione^sup itH^ in the sense ofL^sup 2^(^sup 3^[arrow right]L^sup 2^(^sup 3^) as well asL^sup 1^(^sup 3^[arrow right]L^sup ∞^(^sup 3^) for the non-selfadjoint operator... where [mu]>0 andV^sub 1^, V^sub 2^ are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave, and the aforementioned bounds are needed in the study of nonlinear asymptotic stability of such standing waves. We derive our results under some natural spectral assumptions (corresponding to a ground state soliton of NLS), see A1)-A4) below, but without imposing any restrictions on the edges±μ of the essential spectrum. Our goal is to develop an "axiomatic approach," which frees the linear theory from any nonlinear context in which it may have arisen.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/BF02789446</identifier><language>eng</language><publisher>Jerusalem: Springer Nature B.V</publisher><subject>Estimates</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2006-12, Vol.99 (1), p.199-248</ispartof><rights>Hebrew University of Jerusalem 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-1caa5508b36e456cd22ac2fc1068f6f7f556c1f0e89ae9c1bf2b13abb15c08513</citedby><cites>FETCH-LOGICAL-c366t-1caa5508b36e456cd22ac2fc1068f6f7f556c1f0e89ae9c1bf2b13abb15c08513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Burak Erdoĝan, M.</creatorcontrib><creatorcontrib>Schlag, Wilhelm</creatorcontrib><title>Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II</title><title>Journal d'analyse mathématique (Jerusalem)</title><description>(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We investigate boundedness of the evolutione^sup itH^ in the sense ofL^sup 2^(^sup 3^[arrow right]L^sup 2^(^sup 3^) as well asL^sup 1^(^sup 3^[arrow right]L^sup ∞^(^sup 3^) for the non-selfadjoint operator... where [mu]>0 andV^sub 1^, V^sub 2^ are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave, and the aforementioned bounds are needed in the study of nonlinear asymptotic stability of such standing waves. We derive our results under some natural spectral assumptions (corresponding to a ground state soliton of NLS), see A1)-A4) below, but without imposing any restrictions on the edges±μ of the essential spectrum. Our goal is to develop an "axiomatic approach," which frees the linear theory from any nonlinear context in which it may have arisen.[PUBLICATION ABSTRACT]</description><subject>Estimates</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFUNFKwzAUDaLgnL74BQHfhLqkbdLUN51OBwMf1OeSpjddxpbUpBvMP_CH_AF_zJQJwoXLOZx7DvcgdEnJDSWkmNzPSFqIMs_5ERpRxlkiWCaO0YiQlCYFL8gpOgthRQhjZZaO0NeDCR34YHaAIfRmI3sIWDuPX9XS_3w3xrbgsYsa2TsfsLG4XwLuPASwCrDTWOIInJUDlLaZxGNpMZgW7E6ut5Hs8Sd4h8GCb_eDRWM2YINxg5kHuMXz-Tk60XId4OJvj9H77PFt-pwsXp7m07tFojLO-4QqKRkjos445IyrJk2lSrWihAvNdaFZJKkmIEoJpaK1TmuaybqmTBHBaDZGVwffzruPbfy5WrmttzGyoiKPIygvo-r6oFLeheBBV52P5fh9RUk1VF39V539ApZyc0g</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Burak Erdoĝan, M.</creator><creator>Schlag, Wilhelm</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20061201</creationdate><title>Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II</title><author>Burak Erdoĝan, M. ; Schlag, Wilhelm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-1caa5508b36e456cd22ac2fc1068f6f7f556c1f0e89ae9c1bf2b13abb15c08513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Estimates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burak Erdoĝan, M.</creatorcontrib><creatorcontrib>Schlag, Wilhelm</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burak Erdoĝan, M.</au><au>Schlag, Wilhelm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>99</volume><issue>1</issue><spage>199</spage><epage>248</epage><pages>199-248</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We investigate boundedness of the evolutione^sup itH^ in the sense ofL^sup 2^(^sup 3^[arrow right]L^sup 2^(^sup 3^) as well asL^sup 1^(^sup 3^[arrow right]L^sup ∞^(^sup 3^) for the non-selfadjoint operator... where [mu]>0 andV^sub 1^, V^sub 2^ are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave, and the aforementioned bounds are needed in the study of nonlinear asymptotic stability of such standing waves. We derive our results under some natural spectral assumptions (corresponding to a ground state soliton of NLS), see A1)-A4) below, but without imposing any restrictions on the edges±μ of the essential spectrum. Our goal is to develop an "axiomatic approach," which frees the linear theory from any nonlinear context in which it may have arisen.[PUBLICATION ABSTRACT]</abstract><cop>Jerusalem</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02789446</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-7670 |
ispartof | Journal d'analyse mathématique (Jerusalem), 2006-12, Vol.99 (1), p.199-248 |
issn | 0021-7670 1565-8538 |
language | eng |
recordid | cdi_proquest_journals_1841848169 |
source | Springer Link |
subjects | Estimates |
title | Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersive%20estimates%20for%20Schr%C3%B6dinger%20operators%20in%20the%20presence%20of%20a%20resonance%20and/or%20an%20eigenvalue%20at%20zero%20energy%20in%20dimension%20three:%20II&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Burak%20Erdo%C4%9Dan,%20M.&rft.date=2006-12-01&rft.volume=99&rft.issue=1&rft.spage=199&rft.epage=248&rft.pages=199-248&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/BF02789446&rft_dat=%3Cproquest_cross%3E4256807891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-1caa5508b36e456cd22ac2fc1068f6f7f556c1f0e89ae9c1bf2b13abb15c08513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1841848169&rft_id=info:pmid/&rfr_iscdi=true |