Loading…
Quantum thermodynamics and work fluctuations with applications to magnetic resonance
In this paper, we give a pedagogical introduction to the ideas of quantum thermodynamics and work fluctuations, using only basic concepts from quantum and statistical mechanics. After reviewing the concept of work as usually taught in thermodynamics and statistical mechanics, we discuss the framewor...
Saved in:
Published in: | American journal of physics 2016-12, Vol.84 (12), p.948-957 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we give a pedagogical introduction to the ideas of quantum thermodynamics and work fluctuations, using only basic concepts from quantum and statistical mechanics. After reviewing the concept of work as usually taught in thermodynamics and statistical mechanics, we discuss the framework of non-equilibrium processes in quantum systems together with some modern developments, such as the Jarzynski equality and its connection to the second law of thermodynamics. We then apply these results to the problem of magnetic resonance, where all calculations can be done exactly. It is shown in detail how to build the statistics of the work, both for a single particle and for a collection of non-interacting particles. We hope that this paper will serve as a tool to bring the new student up to date on the recent developments in non-equilibrium thermodynamics of quantum systems. |
---|---|
ISSN: | 0002-9505 1943-2909 |
DOI: | 10.1119/1.4964111 |