Loading…
Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and Negative Output Differential Resistance-Part I: Model Description
We present an accurate and computationally efficient physics-based compact model to quantitatively analyze negative capacitance FET (NCFET) for real circuit design applications. Our model is based on the Landau-Khalatnikov equation coupled to the standard BSIM6 MOSFET model and implemented in Verilo...
Saved in:
Published in: | IEEE transactions on electron devices 2016-12, Vol.63 (12), p.4981-4985 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an accurate and computationally efficient physics-based compact model to quantitatively analyze negative capacitance FET (NCFET) for real circuit design applications. Our model is based on the Landau-Khalatnikov equation coupled to the standard BSIM6 MOSFET model and implemented in Verilog-A. It includes transient and temperature effects, and accurately captures different aspects of NCFET. A comprehensive quasi-static analysis of NCFET in its different regions of operation is also performed using a simpler loadline approach. We also analyze the impact of ferroelectric and gate oxide thicknesses on the performance gain of NCFET over MOSFET. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2016.2614432 |