Loading…

Construction of regular 2n41 designs with general minimum lower-order confounding

Mixed-level designs, especially two- and four-level designs, are very useful in practice. In the last two decades, there are quite a few literatures investigating the selection of this kind of optimal designs. Recently, the general minimum lower-order confounding (GMC) criterion (Zhang et al., 2008...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2017-03, Vol.46 (6), p.2724-2735
Main Authors: Zhang, Tian-Fang, Yang, Jian-Feng, Li, Zhi-Ming, Zhang, Run-Chu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2735
container_issue 6
container_start_page 2724
container_title Communications in statistics. Theory and methods
container_volume 46
creator Zhang, Tian-Fang
Yang, Jian-Feng
Li, Zhi-Ming
Zhang, Run-Chu
description Mixed-level designs, especially two- and four-level designs, are very useful in practice. In the last two decades, there are quite a few literatures investigating the selection of this kind of optimal designs. Recently, the general minimum lower-order confounding (GMC) criterion (Zhang et al., 2008 ) gave a new approach for choosing optimal factorials. It is proved that the GMC designs are more powerful than other criteria in the widely practical situations. In this paper, we extend the GMC theory to the mixed-level designs. Under the theory we establish a new criterion for choosing optimal regular two- and four-level designs. Further, a construction method is proposed to obtain all the 2 n 4 1 GMC designs with N/4 + 1 ⩽ n + 2 ⩽ 5N/16, where N is the number of runs and n is the number of two-level factors.
doi_str_mv 10.1080/03610926.2015.1048887
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1846044213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4270514341</sourcerecordid><originalsourceid>FETCH-LOGICAL-i853-f2f3396c3eaa6865e1f7036aaf20112c620e46af2a0b12d2b5300d9a7cb08ddd3</originalsourceid><addsrcrecordid>eNo1kE1LxDAQhoMouK7-BCHgueskadPsTVn8ggUR9uAtZJukZmkTTVqK_96UXU_DDA8z7zwI3RJYERBwD4wTWFO-okCqPCqFEPUZWpCK0aIk1ec5WsxMMUOX6CqlA2SyFmyBPjbBpyGOzeCCx8HiaNqxUxFTXxKsTXKtT3hywxdujTdRdbh33vVjj7swmViEqE3ETfA2jF47316jC6u6ZG5OdYl2z0-7zWuxfX952zxuCycqVlhqGVvzhhmluOCVIbbOGZWy-QlCG07BlDx3CvaEarqvGIBeq7rZg9BasyW6O679juFnNGmQhzBGny9KIkoOZUkJy9TDkXI5X-zVFGKn5aB-uxBtVL5xSTICcvYo_z3K2aM8eWR_W6Vmhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846044213</pqid></control><display><type>article</type><title>Construction of regular 2n41 designs with general minimum lower-order confounding</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zhang, Tian-Fang ; Yang, Jian-Feng ; Li, Zhi-Ming ; Zhang, Run-Chu</creator><creatorcontrib>Zhang, Tian-Fang ; Yang, Jian-Feng ; Li, Zhi-Ming ; Zhang, Run-Chu</creatorcontrib><description>Mixed-level designs, especially two- and four-level designs, are very useful in practice. In the last two decades, there are quite a few literatures investigating the selection of this kind of optimal designs. Recently, the general minimum lower-order confounding (GMC) criterion (Zhang et al., 2008 ) gave a new approach for choosing optimal factorials. It is proved that the GMC designs are more powerful than other criteria in the widely practical situations. In this paper, we extend the GMC theory to the mixed-level designs. Under the theory we establish a new criterion for choosing optimal regular two- and four-level designs. Further, a construction method is proposed to obtain all the 2 n 4 1 GMC designs with N/4 + 1 ⩽ n + 2 ⩽ 5N/16, where N is the number of runs and n is the number of two-level factors.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2015.1048887</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Aliased effect-number pattern ; effect hierarchy principle ; factorial design ; general minimum lower-order confounding (GMC) ; mixed-level</subject><ispartof>Communications in statistics. Theory and methods, 2017-03, Vol.46 (6), p.2724-2735</ispartof><rights>2017 Taylor &amp; Francis Group, LLC 2017</rights><rights>2017 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Tian-Fang</creatorcontrib><creatorcontrib>Yang, Jian-Feng</creatorcontrib><creatorcontrib>Li, Zhi-Ming</creatorcontrib><creatorcontrib>Zhang, Run-Chu</creatorcontrib><title>Construction of regular 2n41 designs with general minimum lower-order confounding</title><title>Communications in statistics. Theory and methods</title><description>Mixed-level designs, especially two- and four-level designs, are very useful in practice. In the last two decades, there are quite a few literatures investigating the selection of this kind of optimal designs. Recently, the general minimum lower-order confounding (GMC) criterion (Zhang et al., 2008 ) gave a new approach for choosing optimal factorials. It is proved that the GMC designs are more powerful than other criteria in the widely practical situations. In this paper, we extend the GMC theory to the mixed-level designs. Under the theory we establish a new criterion for choosing optimal regular two- and four-level designs. Further, a construction method is proposed to obtain all the 2 n 4 1 GMC designs with N/4 + 1 ⩽ n + 2 ⩽ 5N/16, where N is the number of runs and n is the number of two-level factors.</description><subject>Aliased effect-number pattern</subject><subject>effect hierarchy principle</subject><subject>factorial design</subject><subject>general minimum lower-order confounding (GMC)</subject><subject>mixed-level</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LxDAQhoMouK7-BCHgueskadPsTVn8ggUR9uAtZJukZmkTTVqK_96UXU_DDA8z7zwI3RJYERBwD4wTWFO-okCqPCqFEPUZWpCK0aIk1ec5WsxMMUOX6CqlA2SyFmyBPjbBpyGOzeCCx8HiaNqxUxFTXxKsTXKtT3hywxdujTdRdbh33vVjj7swmViEqE3ETfA2jF47316jC6u6ZG5OdYl2z0-7zWuxfX952zxuCycqVlhqGVvzhhmluOCVIbbOGZWy-QlCG07BlDx3CvaEarqvGIBeq7rZg9BasyW6O679juFnNGmQhzBGny9KIkoOZUkJy9TDkXI5X-zVFGKn5aB-uxBtVL5xSTICcvYo_z3K2aM8eWR_W6Vmhg</recordid><startdate>20170319</startdate><enddate>20170319</enddate><creator>Zhang, Tian-Fang</creator><creator>Yang, Jian-Feng</creator><creator>Li, Zhi-Ming</creator><creator>Zhang, Run-Chu</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170319</creationdate><title>Construction of regular 2n41 designs with general minimum lower-order confounding</title><author>Zhang, Tian-Fang ; Yang, Jian-Feng ; Li, Zhi-Ming ; Zhang, Run-Chu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i853-f2f3396c3eaa6865e1f7036aaf20112c620e46af2a0b12d2b5300d9a7cb08ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aliased effect-number pattern</topic><topic>effect hierarchy principle</topic><topic>factorial design</topic><topic>general minimum lower-order confounding (GMC)</topic><topic>mixed-level</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tian-Fang</creatorcontrib><creatorcontrib>Yang, Jian-Feng</creatorcontrib><creatorcontrib>Li, Zhi-Ming</creatorcontrib><creatorcontrib>Zhang, Run-Chu</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tian-Fang</au><au>Yang, Jian-Feng</au><au>Li, Zhi-Ming</au><au>Zhang, Run-Chu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of regular 2n41 designs with general minimum lower-order confounding</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2017-03-19</date><risdate>2017</risdate><volume>46</volume><issue>6</issue><spage>2724</spage><epage>2735</epage><pages>2724-2735</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>Mixed-level designs, especially two- and four-level designs, are very useful in practice. In the last two decades, there are quite a few literatures investigating the selection of this kind of optimal designs. Recently, the general minimum lower-order confounding (GMC) criterion (Zhang et al., 2008 ) gave a new approach for choosing optimal factorials. It is proved that the GMC designs are more powerful than other criteria in the widely practical situations. In this paper, we extend the GMC theory to the mixed-level designs. Under the theory we establish a new criterion for choosing optimal regular two- and four-level designs. Further, a construction method is proposed to obtain all the 2 n 4 1 GMC designs with N/4 + 1 ⩽ n + 2 ⩽ 5N/16, where N is the number of runs and n is the number of two-level factors.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610926.2015.1048887</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2017-03, Vol.46 (6), p.2724-2735
issn 0361-0926
1532-415X
language eng
recordid cdi_proquest_journals_1846044213
source Taylor and Francis Science and Technology Collection
subjects Aliased effect-number pattern
effect hierarchy principle
factorial design
general minimum lower-order confounding (GMC)
mixed-level
title Construction of regular 2n41 designs with general minimum lower-order confounding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20regular%202n41%20designs%20with%20general%20minimum%20lower-order%20confounding&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Zhang,%20Tian-Fang&rft.date=2017-03-19&rft.volume=46&rft.issue=6&rft.spage=2724&rft.epage=2735&rft.pages=2724-2735&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2015.1048887&rft_dat=%3Cproquest_infor%3E4270514341%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i853-f2f3396c3eaa6865e1f7036aaf20112c620e46af2a0b12d2b5300d9a7cb08ddd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1846044213&rft_id=info:pmid/&rfr_iscdi=true