Loading…
Closed-Form Green's Function of a 2-D Rectangular Room
Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using t...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2016-12, Vol.64 (12), p.5291-5298 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3 |
container_end_page | 5298 |
container_issue | 12 |
container_start_page | 5291 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 64 |
creator | Sadrearhami, Mohammad Hossein Shishegar, Amir Ahmad |
description | Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using three fast methods. In the first method, the integral is computed by the stationary phase method. In the second one, the integral is computed analytically by expanding the integrand into a complex exponential series. In the third method, the integrand is approximated by a series of rational functions and the integral is computed using Cauchy's residue theorem. The results of these three methods are studied and compared in an example. The results show that the methods are fast while preserving accuracy. |
doi_str_mv | 10.1109/TAP.2016.2623903 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1847654411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7727991</ieee_id><sourcerecordid>1847654411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAg6fUfG02OZbqVqGglAreQsxOpKXd1GT34L83pcXTMPC88w4PQreMThij5nE1fZ9wytSEKy4MFWdoxKpKE845O0cjSpkmhqvPS3SV86asUks5Qmq2jRla0sS0w_ME0D1k3Ayd79exwzFghzl5wkvwveu-h61LeBnj7hpdBLfNcHOaY_TRPK9mL2TxNn-dTRfEc8N6YmpOvXeHKlCKgTHCBxO8BwpcuFZKwbXkVWtaUVjz5aTyrnxc6VqrEMQY3R_v7lP8GSD3dhOH1JVKy7SsVSUlY4WiR8qnmHOCYPdpvXPp1zJqD3ZssWMPduzJToncHSNrAPjH65rXxjDxB4O4XW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847654411</pqid></control><display><type>article</type><title>Closed-Form Green's Function of a 2-D Rectangular Room</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sadrearhami, Mohammad Hossein ; Shishegar, Amir Ahmad</creator><creatorcontrib>Sadrearhami, Mohammad Hossein ; Shishegar, Amir Ahmad</creatorcontrib><description>Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using three fast methods. In the first method, the integral is computed by the stationary phase method. In the second one, the integral is computed analytically by expanding the integrand into a complex exponential series. In the third method, the integrand is approximated by a series of rational functions and the integral is computed using Cauchy's residue theorem. The results of these three methods are studied and compared in an example. The results show that the methods are fast while preserving accuracy.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2016.2623903</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Characteristic Green’s function (CGF) technique ; Closed form solutions ; complex images (CIs) methods ; Computation ; Dielectrics ; Exact solutions ; generalized pencil of function (GPOF) ; Green's function methods ; Green’s function ; indoor propagation ; Integrals ; Mathematical analysis ; Methods ; Nonhomogeneous media ; rational function fitting method (RFFM) ; Rational functions ; Ray tracing ; Slabs ; Two dimensional displays ; Two dimensional models ; VECTFIT ; Wave propagation</subject><ispartof>IEEE transactions on antennas and propagation, 2016-12, Vol.64 (12), p.5291-5298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3</citedby><cites>FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3</cites><orcidid>0000-0002-8118-4256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7727991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids></links><search><creatorcontrib>Sadrearhami, Mohammad Hossein</creatorcontrib><creatorcontrib>Shishegar, Amir Ahmad</creatorcontrib><title>Closed-Form Green's Function of a 2-D Rectangular Room</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using three fast methods. In the first method, the integral is computed by the stationary phase method. In the second one, the integral is computed analytically by expanding the integrand into a complex exponential series. In the third method, the integrand is approximated by a series of rational functions and the integral is computed using Cauchy's residue theorem. The results of these three methods are studied and compared in an example. The results show that the methods are fast while preserving accuracy.</description><subject>Antennas</subject><subject>Characteristic Green’s function (CGF) technique</subject><subject>Closed form solutions</subject><subject>complex images (CIs) methods</subject><subject>Computation</subject><subject>Dielectrics</subject><subject>Exact solutions</subject><subject>generalized pencil of function (GPOF)</subject><subject>Green's function methods</subject><subject>Green’s function</subject><subject>indoor propagation</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Nonhomogeneous media</subject><subject>rational function fitting method (RFFM)</subject><subject>Rational functions</subject><subject>Ray tracing</subject><subject>Slabs</subject><subject>Two dimensional displays</subject><subject>Two dimensional models</subject><subject>VECTFIT</subject><subject>Wave propagation</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvAg6fUfG02OZbqVqGglAreQsxOpKXd1GT34L83pcXTMPC88w4PQreMThij5nE1fZ9wytSEKy4MFWdoxKpKE845O0cjSpkmhqvPS3SV86asUks5Qmq2jRla0sS0w_ME0D1k3Ayd79exwzFghzl5wkvwveu-h61LeBnj7hpdBLfNcHOaY_TRPK9mL2TxNn-dTRfEc8N6YmpOvXeHKlCKgTHCBxO8BwpcuFZKwbXkVWtaUVjz5aTyrnxc6VqrEMQY3R_v7lP8GSD3dhOH1JVKy7SsVSUlY4WiR8qnmHOCYPdpvXPp1zJqD3ZssWMPduzJToncHSNrAPjH65rXxjDxB4O4XW0</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Sadrearhami, Mohammad Hossein</creator><creator>Shishegar, Amir Ahmad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8118-4256</orcidid></search><sort><creationdate>201612</creationdate><title>Closed-Form Green's Function of a 2-D Rectangular Room</title><author>Sadrearhami, Mohammad Hossein ; Shishegar, Amir Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antennas</topic><topic>Characteristic Green’s function (CGF) technique</topic><topic>Closed form solutions</topic><topic>complex images (CIs) methods</topic><topic>Computation</topic><topic>Dielectrics</topic><topic>Exact solutions</topic><topic>generalized pencil of function (GPOF)</topic><topic>Green's function methods</topic><topic>Green’s function</topic><topic>indoor propagation</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Nonhomogeneous media</topic><topic>rational function fitting method (RFFM)</topic><topic>Rational functions</topic><topic>Ray tracing</topic><topic>Slabs</topic><topic>Two dimensional displays</topic><topic>Two dimensional models</topic><topic>VECTFIT</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadrearhami, Mohammad Hossein</creatorcontrib><creatorcontrib>Shishegar, Amir Ahmad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadrearhami, Mohammad Hossein</au><au>Shishegar, Amir Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Form Green's Function of a 2-D Rectangular Room</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2016-12</date><risdate>2016</risdate><volume>64</volume><issue>12</issue><spage>5291</spage><epage>5298</epage><pages>5291-5298</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using three fast methods. In the first method, the integral is computed by the stationary phase method. In the second one, the integral is computed analytically by expanding the integrand into a complex exponential series. In the third method, the integrand is approximated by a series of rational functions and the integral is computed using Cauchy's residue theorem. The results of these three methods are studied and compared in an example. The results show that the methods are fast while preserving accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2016.2623903</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8118-4256</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2016-12, Vol.64 (12), p.5291-5298 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_1847654411 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Antennas Characteristic Green’s function (CGF) technique Closed form solutions complex images (CIs) methods Computation Dielectrics Exact solutions generalized pencil of function (GPOF) Green's function methods Green’s function indoor propagation Integrals Mathematical analysis Methods Nonhomogeneous media rational function fitting method (RFFM) Rational functions Ray tracing Slabs Two dimensional displays Two dimensional models VECTFIT Wave propagation |
title | Closed-Form Green's Function of a 2-D Rectangular Room |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Form%20Green's%20Function%20of%20a%202-D%20Rectangular%20Room&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Sadrearhami,%20Mohammad%20Hossein&rft.date=2016-12&rft.volume=64&rft.issue=12&rft.spage=5291&rft.epage=5298&rft.pages=5291-5298&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2016.2623903&rft_dat=%3Cproquest_ieee_%3E1847654411%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1847654411&rft_id=info:pmid/&rft_ieee_id=7727991&rfr_iscdi=true |