Loading…

Closed-Form Green's Function of a 2-D Rectangular Room

Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2016-12, Vol.64 (12), p.5291-5298
Main Authors: Sadrearhami, Mohammad Hossein, Shishegar, Amir Ahmad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3
cites cdi_FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3
container_end_page 5298
container_issue 12
container_start_page 5291
container_title IEEE transactions on antennas and propagation
container_volume 64
creator Sadrearhami, Mohammad Hossein
Shishegar, Amir Ahmad
description Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using three fast methods. In the first method, the integral is computed by the stationary phase method. In the second one, the integral is computed analytically by expanding the integrand into a complex exponential series. In the third method, the integrand is approximated by a series of rational functions and the integral is computed using Cauchy's residue theorem. The results of these three methods are studied and compared in an example. The results show that the methods are fast while preserving accuracy.
doi_str_mv 10.1109/TAP.2016.2623903
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1847654411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7727991</ieee_id><sourcerecordid>1847654411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAg6fUfG02OZbqVqGglAreQsxOpKXd1GT34L83pcXTMPC88w4PQreMThij5nE1fZ9wytSEKy4MFWdoxKpKE845O0cjSpkmhqvPS3SV86asUks5Qmq2jRla0sS0w_ME0D1k3Ayd79exwzFghzl5wkvwveu-h61LeBnj7hpdBLfNcHOaY_TRPK9mL2TxNn-dTRfEc8N6YmpOvXeHKlCKgTHCBxO8BwpcuFZKwbXkVWtaUVjz5aTyrnxc6VqrEMQY3R_v7lP8GSD3dhOH1JVKy7SsVSUlY4WiR8qnmHOCYPdpvXPp1zJqD3ZssWMPduzJToncHSNrAPjH65rXxjDxB4O4XW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847654411</pqid></control><display><type>article</type><title>Closed-Form Green's Function of a 2-D Rectangular Room</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sadrearhami, Mohammad Hossein ; Shishegar, Amir Ahmad</creator><creatorcontrib>Sadrearhami, Mohammad Hossein ; Shishegar, Amir Ahmad</creatorcontrib><description>Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using three fast methods. In the first method, the integral is computed by the stationary phase method. In the second one, the integral is computed analytically by expanding the integrand into a complex exponential series. In the third method, the integrand is approximated by a series of rational functions and the integral is computed using Cauchy's residue theorem. The results of these three methods are studied and compared in an example. The results show that the methods are fast while preserving accuracy.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2016.2623903</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Characteristic Green’s function (CGF) technique ; Closed form solutions ; complex images (CIs) methods ; Computation ; Dielectrics ; Exact solutions ; generalized pencil of function (GPOF) ; Green's function methods ; Green’s function ; indoor propagation ; Integrals ; Mathematical analysis ; Methods ; Nonhomogeneous media ; rational function fitting method (RFFM) ; Rational functions ; Ray tracing ; Slabs ; Two dimensional displays ; Two dimensional models ; VECTFIT ; Wave propagation</subject><ispartof>IEEE transactions on antennas and propagation, 2016-12, Vol.64 (12), p.5291-5298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3</citedby><cites>FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3</cites><orcidid>0000-0002-8118-4256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7727991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,54787</link.rule.ids></links><search><creatorcontrib>Sadrearhami, Mohammad Hossein</creatorcontrib><creatorcontrib>Shishegar, Amir Ahmad</creatorcontrib><title>Closed-Form Green's Function of a 2-D Rectangular Room</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using three fast methods. In the first method, the integral is computed by the stationary phase method. In the second one, the integral is computed analytically by expanding the integrand into a complex exponential series. In the third method, the integrand is approximated by a series of rational functions and the integral is computed using Cauchy's residue theorem. The results of these three methods are studied and compared in an example. The results show that the methods are fast while preserving accuracy.</description><subject>Antennas</subject><subject>Characteristic Green’s function (CGF) technique</subject><subject>Closed form solutions</subject><subject>complex images (CIs) methods</subject><subject>Computation</subject><subject>Dielectrics</subject><subject>Exact solutions</subject><subject>generalized pencil of function (GPOF)</subject><subject>Green's function methods</subject><subject>Green’s function</subject><subject>indoor propagation</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Nonhomogeneous media</subject><subject>rational function fitting method (RFFM)</subject><subject>Rational functions</subject><subject>Ray tracing</subject><subject>Slabs</subject><subject>Two dimensional displays</subject><subject>Two dimensional models</subject><subject>VECTFIT</subject><subject>Wave propagation</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvAg6fUfG02OZbqVqGglAreQsxOpKXd1GT34L83pcXTMPC88w4PQreMThij5nE1fZ9wytSEKy4MFWdoxKpKE845O0cjSpkmhqvPS3SV86asUks5Qmq2jRla0sS0w_ME0D1k3Ayd79exwzFghzl5wkvwveu-h61LeBnj7hpdBLfNcHOaY_TRPK9mL2TxNn-dTRfEc8N6YmpOvXeHKlCKgTHCBxO8BwpcuFZKwbXkVWtaUVjz5aTyrnxc6VqrEMQY3R_v7lP8GSD3dhOH1JVKy7SsVSUlY4WiR8qnmHOCYPdpvXPp1zJqD3ZssWMPduzJToncHSNrAPjH65rXxjDxB4O4XW0</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Sadrearhami, Mohammad Hossein</creator><creator>Shishegar, Amir Ahmad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8118-4256</orcidid></search><sort><creationdate>201612</creationdate><title>Closed-Form Green's Function of a 2-D Rectangular Room</title><author>Sadrearhami, Mohammad Hossein ; Shishegar, Amir Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antennas</topic><topic>Characteristic Green’s function (CGF) technique</topic><topic>Closed form solutions</topic><topic>complex images (CIs) methods</topic><topic>Computation</topic><topic>Dielectrics</topic><topic>Exact solutions</topic><topic>generalized pencil of function (GPOF)</topic><topic>Green's function methods</topic><topic>Green’s function</topic><topic>indoor propagation</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Nonhomogeneous media</topic><topic>rational function fitting method (RFFM)</topic><topic>Rational functions</topic><topic>Ray tracing</topic><topic>Slabs</topic><topic>Two dimensional displays</topic><topic>Two dimensional models</topic><topic>VECTFIT</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadrearhami, Mohammad Hossein</creatorcontrib><creatorcontrib>Shishegar, Amir Ahmad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadrearhami, Mohammad Hossein</au><au>Shishegar, Amir Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Form Green's Function of a 2-D Rectangular Room</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2016-12</date><risdate>2016</risdate><volume>64</volume><issue>12</issue><spage>5291</spage><epage>5298</epage><pages>5291-5298</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Closed-form enough-accurate Green's function for wave-propagation modeling in a rectangular 2-D room is presented using the characteristic Green's function technique. This Green's function is first developed in an integral form. Then, its spatial-domain closed form is obtained using three fast methods. In the first method, the integral is computed by the stationary phase method. In the second one, the integral is computed analytically by expanding the integrand into a complex exponential series. In the third method, the integrand is approximated by a series of rational functions and the integral is computed using Cauchy's residue theorem. The results of these three methods are studied and compared in an example. The results show that the methods are fast while preserving accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2016.2623903</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8118-4256</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2016-12, Vol.64 (12), p.5291-5298
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_1847654411
source IEEE Electronic Library (IEL) Journals
subjects Antennas
Characteristic Green’s function (CGF) technique
Closed form solutions
complex images (CIs) methods
Computation
Dielectrics
Exact solutions
generalized pencil of function (GPOF)
Green's function methods
Green’s function
indoor propagation
Integrals
Mathematical analysis
Methods
Nonhomogeneous media
rational function fitting method (RFFM)
Rational functions
Ray tracing
Slabs
Two dimensional displays
Two dimensional models
VECTFIT
Wave propagation
title Closed-Form Green's Function of a 2-D Rectangular Room
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Form%20Green's%20Function%20of%20a%202-D%20Rectangular%20Room&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Sadrearhami,%20Mohammad%20Hossein&rft.date=2016-12&rft.volume=64&rft.issue=12&rft.spage=5291&rft.epage=5298&rft.pages=5291-5298&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2016.2623903&rft_dat=%3Cproquest_ieee_%3E1847654411%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-9720cca4844e661e993cf9fcce0e23ad44328425d9d39729ba46ca22158786ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1847654411&rft_id=info:pmid/&rft_ieee_id=7727991&rfr_iscdi=true