Loading…

Data Centers as Dispatchable Loads to Harness Stranded Power

We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that signific...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on sustainable energy 2017-01, Vol.8 (1), p.208-218
Main Authors: Kim, Kibaek, Yang, Fan, Zavala, Victor M., Chien, Andrew A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953
cites cdi_FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953
container_end_page 218
container_issue 1
container_start_page 208
container_title IEEE transactions on sustainable energy
container_volume 8
creator Kim, Kibaek
Yang, Fan
Zavala, Victor M.
Chien, Andrew A.
description We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast, optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.
doi_str_mv 10.1109/TSTE.2016.2593607
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_1850219338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7517380</ieee_id><sourcerecordid>1850219338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWLQ_QLwEPW9NNpsv8CJttUJBofUcJtks3VI3NUkR_71btnQuM4fnnRkehO4omVBK9NN6tZ5PSkLFpOSaCSIv0IjqSheMMHl5nkt9jcYpbUlfjDHByAg9zyADnvou-5gwJDxr0x6y24DdebwMUCecA15A7HxKeJUjdLWv8Wf49fEWXTWwS3586jfo63W-ni6K5cfb-_RlWbj-SC4a4oignNhSASghrdTUcqtECYp5J3hDbSUd1I3VlHFQriFc1lw0IHilObtBD8PekHJrkmuzdxsXus67bCgTouJlDz0O0D6Gn4NP2WzDIXb9X4YqTkqqGVM9RQfKxZBS9I3Zx_Yb4p-hxBxlmqNMc5RpTjL7zP2Qab33Z15yKpki7B8rMW26</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850219338</pqid></control><display><type>article</type><title>Data Centers as Dispatchable Loads to Harness Stranded Power</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kim, Kibaek ; Yang, Fan ; Zavala, Victor M. ; Chien, Andrew A.</creator><creatorcontrib>Kim, Kibaek ; Yang, Fan ; Zavala, Victor M. ; Chien, Andrew A. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast, optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2016.2593607</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological system modeling ; Cloud computing ; Computation ; Computer centers ; Data centers ; Economic incentives ; energy markets ; Flexibility ; Fossil fuels ; Generators ; green computing ; Incentives ; Load modeling ; MATHEMATICS AND COMPUTING ; Optimization ; Placement ; power grid ; Power grids ; renewable portfolio standard (RPS) ; renewable power ; Wind farms ; Wind power ; Wind power generation</subject><ispartof>IEEE transactions on sustainable energy, 2017-01, Vol.8 (1), p.208-218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953</citedby><cites>FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7517380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1366452$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kibaek</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Zavala, Victor M.</creatorcontrib><creatorcontrib>Chien, Andrew A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Data Centers as Dispatchable Loads to Harness Stranded Power</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast, optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.</description><subject>Biological system modeling</subject><subject>Cloud computing</subject><subject>Computation</subject><subject>Computer centers</subject><subject>Data centers</subject><subject>Economic incentives</subject><subject>energy markets</subject><subject>Flexibility</subject><subject>Fossil fuels</subject><subject>Generators</subject><subject>green computing</subject><subject>Incentives</subject><subject>Load modeling</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Optimization</subject><subject>Placement</subject><subject>power grid</subject><subject>Power grids</subject><subject>renewable portfolio standard (RPS)</subject><subject>renewable power</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power generation</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWLQ_QLwEPW9NNpsv8CJttUJBofUcJtks3VI3NUkR_71btnQuM4fnnRkehO4omVBK9NN6tZ5PSkLFpOSaCSIv0IjqSheMMHl5nkt9jcYpbUlfjDHByAg9zyADnvou-5gwJDxr0x6y24DdebwMUCecA15A7HxKeJUjdLWv8Wf49fEWXTWwS3586jfo63W-ni6K5cfb-_RlWbj-SC4a4oignNhSASghrdTUcqtECYp5J3hDbSUd1I3VlHFQriFc1lw0IHilObtBD8PekHJrkmuzdxsXus67bCgTouJlDz0O0D6Gn4NP2WzDIXb9X4YqTkqqGVM9RQfKxZBS9I3Zx_Yb4p-hxBxlmqNMc5RpTjL7zP2Qab33Z15yKpki7B8rMW26</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Kim, Kibaek</creator><creator>Yang, Fan</creator><creator>Zavala, Victor M.</creator><creator>Chien, Andrew A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170101</creationdate><title>Data Centers as Dispatchable Loads to Harness Stranded Power</title><author>Kim, Kibaek ; Yang, Fan ; Zavala, Victor M. ; Chien, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological system modeling</topic><topic>Cloud computing</topic><topic>Computation</topic><topic>Computer centers</topic><topic>Data centers</topic><topic>Economic incentives</topic><topic>energy markets</topic><topic>Flexibility</topic><topic>Fossil fuels</topic><topic>Generators</topic><topic>green computing</topic><topic>Incentives</topic><topic>Load modeling</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Optimization</topic><topic>Placement</topic><topic>power grid</topic><topic>Power grids</topic><topic>renewable portfolio standard (RPS)</topic><topic>renewable power</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kibaek</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Zavala, Victor M.</creatorcontrib><creatorcontrib>Chien, Andrew A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kibaek</au><au>Yang, Fan</au><au>Zavala, Victor M.</au><au>Chien, Andrew A.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Centers as Dispatchable Loads to Harness Stranded Power</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>208</spage><epage>218</epage><pages>208-218</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast, optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2016.2593607</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2017-01, Vol.8 (1), p.208-218
issn 1949-3029
1949-3037
language eng
recordid cdi_proquest_journals_1850219338
source IEEE Electronic Library (IEL) Journals
subjects Biological system modeling
Cloud computing
Computation
Computer centers
Data centers
Economic incentives
energy markets
Flexibility
Fossil fuels
Generators
green computing
Incentives
Load modeling
MATHEMATICS AND COMPUTING
Optimization
Placement
power grid
Power grids
renewable portfolio standard (RPS)
renewable power
Wind farms
Wind power
Wind power generation
title Data Centers as Dispatchable Loads to Harness Stranded Power
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Centers%20as%20Dispatchable%20Loads%20to%20Harness%20Stranded%20Power&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Kim,%20Kibaek&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-01-01&rft.volume=8&rft.issue=1&rft.spage=208&rft.epage=218&rft.pages=208-218&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2016.2593607&rft_dat=%3Cproquest_osti_%3E1850219338%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1850219338&rft_id=info:pmid/&rft_ieee_id=7517380&rfr_iscdi=true