Loading…
Data Centers as Dispatchable Loads to Harness Stranded Power
We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that signific...
Saved in:
Published in: | IEEE transactions on sustainable energy 2017-01, Vol.8 (1), p.208-218 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953 |
container_end_page | 218 |
container_issue | 1 |
container_start_page | 208 |
container_title | IEEE transactions on sustainable energy |
container_volume | 8 |
creator | Kim, Kibaek Yang, Fan Zavala, Victor M. Chien, Andrew A. |
description | We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast, optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power. |
doi_str_mv | 10.1109/TSTE.2016.2593607 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_1850219338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7517380</ieee_id><sourcerecordid>1850219338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWLQ_QLwEPW9NNpsv8CJttUJBofUcJtks3VI3NUkR_71btnQuM4fnnRkehO4omVBK9NN6tZ5PSkLFpOSaCSIv0IjqSheMMHl5nkt9jcYpbUlfjDHByAg9zyADnvou-5gwJDxr0x6y24DdebwMUCecA15A7HxKeJUjdLWv8Wf49fEWXTWwS3586jfo63W-ni6K5cfb-_RlWbj-SC4a4oignNhSASghrdTUcqtECYp5J3hDbSUd1I3VlHFQriFc1lw0IHilObtBD8PekHJrkmuzdxsXus67bCgTouJlDz0O0D6Gn4NP2WzDIXb9X4YqTkqqGVM9RQfKxZBS9I3Zx_Yb4p-hxBxlmqNMc5RpTjL7zP2Qab33Z15yKpki7B8rMW26</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850219338</pqid></control><display><type>article</type><title>Data Centers as Dispatchable Loads to Harness Stranded Power</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kim, Kibaek ; Yang, Fan ; Zavala, Victor M. ; Chien, Andrew A.</creator><creatorcontrib>Kim, Kibaek ; Yang, Fan ; Zavala, Victor M. ; Chien, Andrew A. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast, optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2016.2593607</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological system modeling ; Cloud computing ; Computation ; Computer centers ; Data centers ; Economic incentives ; energy markets ; Flexibility ; Fossil fuels ; Generators ; green computing ; Incentives ; Load modeling ; MATHEMATICS AND COMPUTING ; Optimization ; Placement ; power grid ; Power grids ; renewable portfolio standard (RPS) ; renewable power ; Wind farms ; Wind power ; Wind power generation</subject><ispartof>IEEE transactions on sustainable energy, 2017-01, Vol.8 (1), p.208-218</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953</citedby><cites>FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7517380$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1366452$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kibaek</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Zavala, Victor M.</creatorcontrib><creatorcontrib>Chien, Andrew A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Data Centers as Dispatchable Loads to Harness Stranded Power</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast, optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.</description><subject>Biological system modeling</subject><subject>Cloud computing</subject><subject>Computation</subject><subject>Computer centers</subject><subject>Data centers</subject><subject>Economic incentives</subject><subject>energy markets</subject><subject>Flexibility</subject><subject>Fossil fuels</subject><subject>Generators</subject><subject>green computing</subject><subject>Incentives</subject><subject>Load modeling</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Optimization</subject><subject>Placement</subject><subject>power grid</subject><subject>Power grids</subject><subject>renewable portfolio standard (RPS)</subject><subject>renewable power</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power generation</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWLQ_QLwEPW9NNpsv8CJttUJBofUcJtks3VI3NUkR_71btnQuM4fnnRkehO4omVBK9NN6tZ5PSkLFpOSaCSIv0IjqSheMMHl5nkt9jcYpbUlfjDHByAg9zyADnvou-5gwJDxr0x6y24DdebwMUCecA15A7HxKeJUjdLWv8Wf49fEWXTWwS3586jfo63W-ni6K5cfb-_RlWbj-SC4a4oignNhSASghrdTUcqtECYp5J3hDbSUd1I3VlHFQriFc1lw0IHilObtBD8PekHJrkmuzdxsXus67bCgTouJlDz0O0D6Gn4NP2WzDIXb9X4YqTkqqGVM9RQfKxZBS9I3Zx_Yb4p-hxBxlmqNMc5RpTjL7zP2Qab33Z15yKpki7B8rMW26</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Kim, Kibaek</creator><creator>Yang, Fan</creator><creator>Zavala, Victor M.</creator><creator>Chien, Andrew A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170101</creationdate><title>Data Centers as Dispatchable Loads to Harness Stranded Power</title><author>Kim, Kibaek ; Yang, Fan ; Zavala, Victor M. ; Chien, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological system modeling</topic><topic>Cloud computing</topic><topic>Computation</topic><topic>Computer centers</topic><topic>Data centers</topic><topic>Economic incentives</topic><topic>energy markets</topic><topic>Flexibility</topic><topic>Fossil fuels</topic><topic>Generators</topic><topic>green computing</topic><topic>Incentives</topic><topic>Load modeling</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Optimization</topic><topic>Placement</topic><topic>power grid</topic><topic>Power grids</topic><topic>renewable portfolio standard (RPS)</topic><topic>renewable power</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kibaek</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Zavala, Victor M.</creatorcontrib><creatorcontrib>Chien, Andrew A.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kibaek</au><au>Yang, Fan</au><au>Zavala, Victor M.</au><au>Chien, Andrew A.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Centers as Dispatchable Loads to Harness Stranded Power</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>208</spage><epage>218</epage><pages>208-218</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>We analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast, optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2016.2593607</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3029 |
ispartof | IEEE transactions on sustainable energy, 2017-01, Vol.8 (1), p.208-218 |
issn | 1949-3029 1949-3037 |
language | eng |
recordid | cdi_proquest_journals_1850219338 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Biological system modeling Cloud computing Computation Computer centers Data centers Economic incentives energy markets Flexibility Fossil fuels Generators green computing Incentives Load modeling MATHEMATICS AND COMPUTING Optimization Placement power grid Power grids renewable portfolio standard (RPS) renewable power Wind farms Wind power Wind power generation |
title | Data Centers as Dispatchable Loads to Harness Stranded Power |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Centers%20as%20Dispatchable%20Loads%20to%20Harness%20Stranded%20Power&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Kim,%20Kibaek&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-01-01&rft.volume=8&rft.issue=1&rft.spage=208&rft.epage=218&rft.pages=208-218&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2016.2593607&rft_dat=%3Cproquest_osti_%3E1850219338%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-f0c06150b28aa867b791b5b862a83ec65f1b47cadfb9135a8cf057d56fa654953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1850219338&rft_id=info:pmid/&rft_ieee_id=7517380&rfr_iscdi=true |