Loading…

Electrical Properties of Single-Walled/Multi-Walled Carbon-Nanotubes Filled Polycarbonate Nanocomposites

The work focused on development of flexible and light weight polycarbonate based nanocomposites containing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) prepared by solution method for electronic applications. X-ray diffractometry (XRD), transmission electron mic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2017, Vol.46 (1), p.458-466
Main Authors: Sain, P. K., Goyal, R. K., Prasad, Y. V. S. S., Bhargava, A. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The work focused on development of flexible and light weight polycarbonate based nanocomposites containing single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) prepared by solution method for electronic applications. X-ray diffractometry (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used for the characterization. XRD confirmed the presence of CNTs in the nanocomposites. TEM and SEM both revealed the dispersion of CNTs in the matrix. Percolation threshold was found to occur at 0.5 vol.% for SWCNTs and 4 vol.% for MWCNTs filled polycarbonate nanocomposites. The electrical conductivity, relative dielectric constant and dissipation factor of the nanocomposites were increased abruptly above percolation threshold. The maximum achieved electrical conductivity and the relative dielectric constant of the nanocomposites was found 10 −4 S/cm and 10 8 , respectively in both the nanocomposites. The best achieved combination of relative dielectric constant and dissipation factor was found in 1 vol.% SWCNT-PC nanocomposite. The relative dielectric constant of the nanocomposites was almost temperature independent from room temperature to 200°C.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-016-4907-5