Loading…
The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff
This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x...
Saved in:
Published in: | IEEE transactions on electron devices 2017-01, Vol.64 (1), p.8-14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43 |
container_end_page | 14 |
container_issue | 1 |
container_start_page | 8 |
container_title | IEEE transactions on electron devices |
container_volume | 64 |
creator | Coyne, Edward J. Whiston, Shay O hAnnaidh, Breandan Pol McAuliffe, Donal P. Lane, Bill |
description | This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x 1100 V|, a JfT at 1 V = 28.7 μAμm -2 , and |fT at 1 V x BV| = |2.6 GHz x 58 V|, with a p-n-p having a |β at 1 V x V a at 18 V| = |250 x 800 V|, a JfT at 1 V = 27.0 μ Aμm -2 , and |fT at 1 V x BV| = |1.9 GHz x 69 V|. While these performance enhancements appear to offer a lot with little expense, they do serve to reveal an additional tradeoff between β x V a x fT x BV x JfT and Linearity. This is where the curvature of the forward output characteristic curves quantified by the extrapolated Early voltage significantly changes over the voltage range |0-10 V|. Through the use of measured silicon results with calibrated TCAD simulations, the physics behind this depletion mode collector design is explained, and using this understanding, it ultimately shows how it is possible to limit the range of the associated nonlinear performance for low collector biases. Then, keeping linearity as a key performance target together with the field-effect architecture, the 36 V bipolar is rebalanced to achieve ann-p-nwitha|β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |270 x 220 V x 2.6 GHz x 28.7 μAμm -2 x 47 V x (0.2-30 V) Linearity|, and a p-n-p with a |β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |185 x 180 V x 1.8 GHz x 27 μAμm -2 x 45 V x (0.2-30 V) Linearity|. |
doi_str_mv | 10.1109/TED.2016.2628519 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1855618369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7763817</ieee_id><sourcerecordid>1855618369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt7wc2A66l5T-JOa31Awc3oqhCSzA1OaTs1mYL996Z0cOvqPjjnnsuH0DXBE0KwvqtnTxOKiZxQSZUg-gSNiBBVqSWXp2iEMVGlZoqdo4uUlnmUnNMRsvUXFEwWn8Vju-1WNt4XCwe9LRZ9u4aU90Oz6OGn_3-Ytxuwse33RR1tA10Il-gs2FWCq6GO0cfzrJ6-lvP3l7fpw7z0hEldgqqcq4QP0ASrKAnYOtY4rz1rAAALq4BhzgkAVU5wJp0NXglmKWfaczZGt8e729h97yD1Ztnt4iZHGqKEkETlmKzCR5WPXUoRgtnGdm3j3hBsDiBNBmkOIM0AMltujpY2__EnryrJFKnYL9atbug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855618369</pqid></control><display><type>article</type><title>The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Coyne, Edward J. ; Whiston, Shay ; O hAnnaidh, Breandan Pol ; McAuliffe, Donal P. ; Lane, Bill</creator><creatorcontrib>Coyne, Edward J. ; Whiston, Shay ; O hAnnaidh, Breandan Pol ; McAuliffe, Donal P. ; Lane, Bill</creatorcontrib><description>This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x 1100 V|, a JfT at 1 V = 28.7 μAμm -2 , and |fT at 1 V x BV| = |2.6 GHz x 58 V|, with a p-n-p having a |β at 1 V x V a at 18 V| = |250 x 800 V|, a JfT at 1 V = 27.0 μ Aμm -2 , and |fT at 1 V x BV| = |1.9 GHz x 69 V|. While these performance enhancements appear to offer a lot with little expense, they do serve to reveal an additional tradeoff between β x V a x fT x BV x JfT and Linearity. This is where the curvature of the forward output characteristic curves quantified by the extrapolated Early voltage significantly changes over the voltage range |0-10 V|. Through the use of measured silicon results with calibrated TCAD simulations, the physics behind this depletion mode collector design is explained, and using this understanding, it ultimately shows how it is possible to limit the range of the associated nonlinear performance for low collector biases. Then, keeping linearity as a key performance target together with the field-effect architecture, the 36 V bipolar is rebalanced to achieve ann-p-nwitha|β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |270 x 220 V x 2.6 GHz x 28.7 μAμm -2 x 47 V x (0.2-30 V) Linearity|, and a p-n-p with a |β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |185 x 180 V x 1.8 GHz x 27 μAμm -2 x 45 V x (0.2-30 V) Linearity|.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2016.2628519</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Architecture ; Capacitance ; Complimentary 36 V SiGe bipolar ; Curvature ; Depletion ; depletion mode field plate ; Design optimization ; Electric breakdown ; Electric potential ; Electrodes ; Junctions ; Linearity ; Performance evaluation ; poly-silicon emitter ; Tradeoffs</subject><ispartof>IEEE transactions on electron devices, 2017-01, Vol.64 (1), p.8-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43</citedby><cites>FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43</cites><orcidid>0000-0003-1038-4338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7763817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Coyne, Edward J.</creatorcontrib><creatorcontrib>Whiston, Shay</creatorcontrib><creatorcontrib>O hAnnaidh, Breandan Pol</creatorcontrib><creatorcontrib>McAuliffe, Donal P.</creatorcontrib><creatorcontrib>Lane, Bill</creatorcontrib><title>The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x 1100 V|, a JfT at 1 V = 28.7 μAμm -2 , and |fT at 1 V x BV| = |2.6 GHz x 58 V|, with a p-n-p having a |β at 1 V x V a at 18 V| = |250 x 800 V|, a JfT at 1 V = 27.0 μ Aμm -2 , and |fT at 1 V x BV| = |1.9 GHz x 69 V|. While these performance enhancements appear to offer a lot with little expense, they do serve to reveal an additional tradeoff between β x V a x fT x BV x JfT and Linearity. This is where the curvature of the forward output characteristic curves quantified by the extrapolated Early voltage significantly changes over the voltage range |0-10 V|. Through the use of measured silicon results with calibrated TCAD simulations, the physics behind this depletion mode collector design is explained, and using this understanding, it ultimately shows how it is possible to limit the range of the associated nonlinear performance for low collector biases. Then, keeping linearity as a key performance target together with the field-effect architecture, the 36 V bipolar is rebalanced to achieve ann-p-nwitha|β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |270 x 220 V x 2.6 GHz x 28.7 μAμm -2 x 47 V x (0.2-30 V) Linearity|, and a p-n-p with a |β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |185 x 180 V x 1.8 GHz x 27 μAμm -2 x 45 V x (0.2-30 V) Linearity|.</description><subject>Acceleration</subject><subject>Architecture</subject><subject>Capacitance</subject><subject>Complimentary 36 V SiGe bipolar</subject><subject>Curvature</subject><subject>Depletion</subject><subject>depletion mode field plate</subject><subject>Design optimization</subject><subject>Electric breakdown</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Junctions</subject><subject>Linearity</subject><subject>Performance evaluation</subject><subject>poly-silicon emitter</subject><subject>Tradeoffs</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt7wc2A66l5T-JOa31Awc3oqhCSzA1OaTs1mYL996Z0cOvqPjjnnsuH0DXBE0KwvqtnTxOKiZxQSZUg-gSNiBBVqSWXp2iEMVGlZoqdo4uUlnmUnNMRsvUXFEwWn8Vju-1WNt4XCwe9LRZ9u4aU90Oz6OGn_3-Ytxuwse33RR1tA10Il-gs2FWCq6GO0cfzrJ6-lvP3l7fpw7z0hEldgqqcq4QP0ASrKAnYOtY4rz1rAAALq4BhzgkAVU5wJp0NXglmKWfaczZGt8e729h97yD1Ztnt4iZHGqKEkETlmKzCR5WPXUoRgtnGdm3j3hBsDiBNBmkOIM0AMltujpY2__EnryrJFKnYL9atbug</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Coyne, Edward J.</creator><creator>Whiston, Shay</creator><creator>O hAnnaidh, Breandan Pol</creator><creator>McAuliffe, Donal P.</creator><creator>Lane, Bill</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1038-4338</orcidid></search><sort><creationdate>201701</creationdate><title>The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff</title><author>Coyne, Edward J. ; Whiston, Shay ; O hAnnaidh, Breandan Pol ; McAuliffe, Donal P. ; Lane, Bill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Architecture</topic><topic>Capacitance</topic><topic>Complimentary 36 V SiGe bipolar</topic><topic>Curvature</topic><topic>Depletion</topic><topic>depletion mode field plate</topic><topic>Design optimization</topic><topic>Electric breakdown</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Junctions</topic><topic>Linearity</topic><topic>Performance evaluation</topic><topic>poly-silicon emitter</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coyne, Edward J.</creatorcontrib><creatorcontrib>Whiston, Shay</creatorcontrib><creatorcontrib>O hAnnaidh, Breandan Pol</creatorcontrib><creatorcontrib>McAuliffe, Donal P.</creatorcontrib><creatorcontrib>Lane, Bill</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coyne, Edward J.</au><au>Whiston, Shay</au><au>O hAnnaidh, Breandan Pol</au><au>McAuliffe, Donal P.</au><au>Lane, Bill</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2017-01</date><risdate>2017</risdate><volume>64</volume><issue>1</issue><spage>8</spage><epage>14</epage><pages>8-14</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x 1100 V|, a JfT at 1 V = 28.7 μAμm -2 , and |fT at 1 V x BV| = |2.6 GHz x 58 V|, with a p-n-p having a |β at 1 V x V a at 18 V| = |250 x 800 V|, a JfT at 1 V = 27.0 μ Aμm -2 , and |fT at 1 V x BV| = |1.9 GHz x 69 V|. While these performance enhancements appear to offer a lot with little expense, they do serve to reveal an additional tradeoff between β x V a x fT x BV x JfT and Linearity. This is where the curvature of the forward output characteristic curves quantified by the extrapolated Early voltage significantly changes over the voltage range |0-10 V|. Through the use of measured silicon results with calibrated TCAD simulations, the physics behind this depletion mode collector design is explained, and using this understanding, it ultimately shows how it is possible to limit the range of the associated nonlinear performance for low collector biases. Then, keeping linearity as a key performance target together with the field-effect architecture, the 36 V bipolar is rebalanced to achieve ann-p-nwitha|β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |270 x 220 V x 2.6 GHz x 28.7 μAμm -2 x 47 V x (0.2-30 V) Linearity|, and a p-n-p with a |β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |185 x 180 V x 1.8 GHz x 27 μAμm -2 x 45 V x (0.2-30 V) Linearity|.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2016.2628519</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1038-4338</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2017-01, Vol.64 (1), p.8-14 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_1855618369 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceleration Architecture Capacitance Complimentary 36 V SiGe bipolar Curvature Depletion depletion mode field plate Design optimization Electric breakdown Electric potential Electrodes Junctions Linearity Performance evaluation poly-silicon emitter Tradeoffs |
title | The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%2036%20V%20Bipolar:%20%5Cbeta%20%5Ctimes%20V%20%5Ctimes%20%5Ctext%20%5Ctimes%20%5Ctext%20%5Ctimes%20%5Ctext%20%5Ctimes%20Linearity%20Tradeoff&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Coyne,%20Edward%20J.&rft.date=2017-01&rft.volume=64&rft.issue=1&rft.spage=8&rft.epage=14&rft.pages=8-14&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2016.2628519&rft_dat=%3Cproquest_ieee_%3E1855618369%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1855618369&rft_id=info:pmid/&rft_ieee_id=7763817&rfr_iscdi=true |