Loading…

The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff

This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2017-01, Vol.64 (1), p.8-14
Main Authors: Coyne, Edward J., Whiston, Shay, O hAnnaidh, Breandan Pol, McAuliffe, Donal P., Lane, Bill
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43
cites cdi_FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43
container_end_page 14
container_issue 1
container_start_page 8
container_title IEEE transactions on electron devices
container_volume 64
creator Coyne, Edward J.
Whiston, Shay
O hAnnaidh, Breandan Pol
McAuliffe, Donal P.
Lane, Bill
description This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x 1100 V|, a JfT at 1 V = 28.7 μAμm -2 , and |fT at 1 V x BV| = |2.6 GHz x 58 V|, with a p-n-p having a |β at 1 V x V a at 18 V| = |250 x 800 V|, a JfT at 1 V = 27.0 μ Aμm -2 , and |fT at 1 V x BV| = |1.9 GHz x 69 V|. While these performance enhancements appear to offer a lot with little expense, they do serve to reveal an additional tradeoff between β x V a x fT x BV x JfT and Linearity. This is where the curvature of the forward output characteristic curves quantified by the extrapolated Early voltage significantly changes over the voltage range |0-10 V|. Through the use of measured silicon results with calibrated TCAD simulations, the physics behind this depletion mode collector design is explained, and using this understanding, it ultimately shows how it is possible to limit the range of the associated nonlinear performance for low collector biases. Then, keeping linearity as a key performance target together with the field-effect architecture, the 36 V bipolar is rebalanced to achieve ann-p-nwitha|β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |270 x 220 V x 2.6 GHz x 28.7 μAμm -2 x 47 V x (0.2-30 V) Linearity|, and a p-n-p with a |β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |185 x 180 V x 1.8 GHz x 27 μAμm -2 x 45 V x (0.2-30 V) Linearity|.
doi_str_mv 10.1109/TED.2016.2628519
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1855618369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7763817</ieee_id><sourcerecordid>1855618369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt7wc2A66l5T-JOa31Awc3oqhCSzA1OaTs1mYL996Z0cOvqPjjnnsuH0DXBE0KwvqtnTxOKiZxQSZUg-gSNiBBVqSWXp2iEMVGlZoqdo4uUlnmUnNMRsvUXFEwWn8Vju-1WNt4XCwe9LRZ9u4aU90Oz6OGn_3-Ytxuwse33RR1tA10Il-gs2FWCq6GO0cfzrJ6-lvP3l7fpw7z0hEldgqqcq4QP0ASrKAnYOtY4rz1rAAALq4BhzgkAVU5wJp0NXglmKWfaczZGt8e729h97yD1Ztnt4iZHGqKEkETlmKzCR5WPXUoRgtnGdm3j3hBsDiBNBmkOIM0AMltujpY2__EnryrJFKnYL9atbug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855618369</pqid></control><display><type>article</type><title>The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Coyne, Edward J. ; Whiston, Shay ; O hAnnaidh, Breandan Pol ; McAuliffe, Donal P. ; Lane, Bill</creator><creatorcontrib>Coyne, Edward J. ; Whiston, Shay ; O hAnnaidh, Breandan Pol ; McAuliffe, Donal P. ; Lane, Bill</creatorcontrib><description>This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x 1100 V|, a JfT at 1 V = 28.7 μAμm -2 , and |fT at 1 V x BV| = |2.6 GHz x 58 V|, with a p-n-p having a |β at 1 V x V a at 18 V| = |250 x 800 V|, a JfT at 1 V = 27.0 μ Aμm -2 , and |fT at 1 V x BV| = |1.9 GHz x 69 V|. While these performance enhancements appear to offer a lot with little expense, they do serve to reveal an additional tradeoff between β x V a x fT x BV x JfT and Linearity. This is where the curvature of the forward output characteristic curves quantified by the extrapolated Early voltage significantly changes over the voltage range |0-10 V|. Through the use of measured silicon results with calibrated TCAD simulations, the physics behind this depletion mode collector design is explained, and using this understanding, it ultimately shows how it is possible to limit the range of the associated nonlinear performance for low collector biases. Then, keeping linearity as a key performance target together with the field-effect architecture, the 36 V bipolar is rebalanced to achieve ann-p-nwitha|β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |270 x 220 V x 2.6 GHz x 28.7 μAμm -2 x 47 V x (0.2-30 V) Linearity|, and a p-n-p with a |β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |185 x 180 V x 1.8 GHz x 27 μAμm -2 x 45 V x (0.2-30 V) Linearity|.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2016.2628519</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Architecture ; Capacitance ; Complimentary 36 V SiGe bipolar ; Curvature ; Depletion ; depletion mode field plate ; Design optimization ; Electric breakdown ; Electric potential ; Electrodes ; Junctions ; Linearity ; Performance evaluation ; poly-silicon emitter ; Tradeoffs</subject><ispartof>IEEE transactions on electron devices, 2017-01, Vol.64 (1), p.8-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43</citedby><cites>FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43</cites><orcidid>0000-0003-1038-4338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7763817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Coyne, Edward J.</creatorcontrib><creatorcontrib>Whiston, Shay</creatorcontrib><creatorcontrib>O hAnnaidh, Breandan Pol</creatorcontrib><creatorcontrib>McAuliffe, Donal P.</creatorcontrib><creatorcontrib>Lane, Bill</creatorcontrib><title>The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x 1100 V|, a JfT at 1 V = 28.7 μAμm -2 , and |fT at 1 V x BV| = |2.6 GHz x 58 V|, with a p-n-p having a |β at 1 V x V a at 18 V| = |250 x 800 V|, a JfT at 1 V = 27.0 μ Aμm -2 , and |fT at 1 V x BV| = |1.9 GHz x 69 V|. While these performance enhancements appear to offer a lot with little expense, they do serve to reveal an additional tradeoff between β x V a x fT x BV x JfT and Linearity. This is where the curvature of the forward output characteristic curves quantified by the extrapolated Early voltage significantly changes over the voltage range |0-10 V|. Through the use of measured silicon results with calibrated TCAD simulations, the physics behind this depletion mode collector design is explained, and using this understanding, it ultimately shows how it is possible to limit the range of the associated nonlinear performance for low collector biases. Then, keeping linearity as a key performance target together with the field-effect architecture, the 36 V bipolar is rebalanced to achieve ann-p-nwitha|β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |270 x 220 V x 2.6 GHz x 28.7 μAμm -2 x 47 V x (0.2-30 V) Linearity|, and a p-n-p with a |β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |185 x 180 V x 1.8 GHz x 27 μAμm -2 x 45 V x (0.2-30 V) Linearity|.</description><subject>Acceleration</subject><subject>Architecture</subject><subject>Capacitance</subject><subject>Complimentary 36 V SiGe bipolar</subject><subject>Curvature</subject><subject>Depletion</subject><subject>depletion mode field plate</subject><subject>Design optimization</subject><subject>Electric breakdown</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Junctions</subject><subject>Linearity</subject><subject>Performance evaluation</subject><subject>poly-silicon emitter</subject><subject>Tradeoffs</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt7wc2A66l5T-JOa31Awc3oqhCSzA1OaTs1mYL996Z0cOvqPjjnnsuH0DXBE0KwvqtnTxOKiZxQSZUg-gSNiBBVqSWXp2iEMVGlZoqdo4uUlnmUnNMRsvUXFEwWn8Vju-1WNt4XCwe9LRZ9u4aU90Oz6OGn_3-Ytxuwse33RR1tA10Il-gs2FWCq6GO0cfzrJ6-lvP3l7fpw7z0hEldgqqcq4QP0ASrKAnYOtY4rz1rAAALq4BhzgkAVU5wJp0NXglmKWfaczZGt8e729h97yD1Ztnt4iZHGqKEkETlmKzCR5WPXUoRgtnGdm3j3hBsDiBNBmkOIM0AMltujpY2__EnryrJFKnYL9atbug</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Coyne, Edward J.</creator><creator>Whiston, Shay</creator><creator>O hAnnaidh, Breandan Pol</creator><creator>McAuliffe, Donal P.</creator><creator>Lane, Bill</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1038-4338</orcidid></search><sort><creationdate>201701</creationdate><title>The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff</title><author>Coyne, Edward J. ; Whiston, Shay ; O hAnnaidh, Breandan Pol ; McAuliffe, Donal P. ; Lane, Bill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Architecture</topic><topic>Capacitance</topic><topic>Complimentary 36 V SiGe bipolar</topic><topic>Curvature</topic><topic>Depletion</topic><topic>depletion mode field plate</topic><topic>Design optimization</topic><topic>Electric breakdown</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Junctions</topic><topic>Linearity</topic><topic>Performance evaluation</topic><topic>poly-silicon emitter</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coyne, Edward J.</creatorcontrib><creatorcontrib>Whiston, Shay</creatorcontrib><creatorcontrib>O hAnnaidh, Breandan Pol</creatorcontrib><creatorcontrib>McAuliffe, Donal P.</creatorcontrib><creatorcontrib>Lane, Bill</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coyne, Edward J.</au><au>Whiston, Shay</au><au>O hAnnaidh, Breandan Pol</au><au>McAuliffe, Donal P.</au><au>Lane, Bill</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2017-01</date><risdate>2017</risdate><volume>64</volume><issue>1</issue><spage>8</spage><epage>14</epage><pages>8-14</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper reports on the optimization of a 36 V complimentary bipolar design by using a new depletion mode field-effect architecture for the collector of the bipolar that greatly expands the boundary of the familiar tradeoffs. This achieves an n-p-n with a measured |β at 1 V x V a at 18 V| = |270 x 1100 V|, a JfT at 1 V = 28.7 μAμm -2 , and |fT at 1 V x BV| = |2.6 GHz x 58 V|, with a p-n-p having a |β at 1 V x V a at 18 V| = |250 x 800 V|, a JfT at 1 V = 27.0 μ Aμm -2 , and |fT at 1 V x BV| = |1.9 GHz x 69 V|. While these performance enhancements appear to offer a lot with little expense, they do serve to reveal an additional tradeoff between β x V a x fT x BV x JfT and Linearity. This is where the curvature of the forward output characteristic curves quantified by the extrapolated Early voltage significantly changes over the voltage range |0-10 V|. Through the use of measured silicon results with calibrated TCAD simulations, the physics behind this depletion mode collector design is explained, and using this understanding, it ultimately shows how it is possible to limit the range of the associated nonlinear performance for low collector biases. Then, keeping linearity as a key performance target together with the field-effect architecture, the 36 V bipolar is rebalanced to achieve ann-p-nwitha|β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |270 x 220 V x 2.6 GHz x 28.7 μAμm -2 x 47 V x (0.2-30 V) Linearity|, and a p-n-p with a |β at 1 V x V a at 18 V x fT at 1 V x JfT at 1 V x BV x Linearity| = |185 x 180 V x 1.8 GHz x 27 μAμm -2 x 45 V x (0.2-30 V) Linearity|.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2016.2628519</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1038-4338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2017-01, Vol.64 (1), p.8-14
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_1855618369
source IEEE Electronic Library (IEL) Journals
subjects Acceleration
Architecture
Capacitance
Complimentary 36 V SiGe bipolar
Curvature
Depletion
depletion mode field plate
Design optimization
Electric breakdown
Electric potential
Electrodes
Junctions
Linearity
Performance evaluation
poly-silicon emitter
Tradeoffs
title The 36 V Bipolar: \beta \times V \times \text \times \text \times \text \times Linearity Tradeoff
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%2036%20V%20Bipolar:%20%5Cbeta%20%5Ctimes%20V%20%5Ctimes%20%5Ctext%20%5Ctimes%20%5Ctext%20%5Ctimes%20%5Ctext%20%5Ctimes%20Linearity%20Tradeoff&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Coyne,%20Edward%20J.&rft.date=2017-01&rft.volume=64&rft.issue=1&rft.spage=8&rft.epage=14&rft.pages=8-14&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2016.2628519&rft_dat=%3Cproquest_ieee_%3E1855618369%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1369-e87bb75cfedfa821f0ab3dbc9c3deee05a8e30441ee28b5436bafc853a2439c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1855618369&rft_id=info:pmid/&rft_ieee_id=7763817&rfr_iscdi=true