Loading…

Autonomous Vehicle Safety: An Interdisciplinary Challenge

Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly...

Full description

Saved in:
Bibliographic Details
Published in:IEEE intelligent transportation systems magazine 2017-01, Vol.9 (1), p.90-96
Main Authors: Koopman, Philip, Wagner, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3
cites cdi_FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3
container_end_page 96
container_issue 1
container_start_page 90
container_title IEEE intelligent transportation systems magazine
container_volume 9
creator Koopman, Philip
Wagner, Michael
description Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly unstructured environments, to appropriate regulatory approaches. Significant open technical challenges include validating inductive learning in the face of novel environmental inputs and achieving the very high levels of dependability required for full-scale fleet deployment. However, the biggest challenge may be in creating an end-to-end design and deployment process that integrates the safety concerns of a myriad of technical specialties into a unified approach.
doi_str_mv 10.1109/MITS.2016.2583491
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1859923166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7823109</ieee_id><sourcerecordid>1859923166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-APES8Jy6s1_JeivFj0LFQ6vXJdnM2pQ0qbvJof_eDS3OZQbmfWdeHkLugc4BqH76WG03c0ZBzZnMudBwRSagBaQAOrseZ65T4JreklkIexqLs1wxPSF6MfRd2x26ISTfuKttg8mmcNifnpNFm6zaHn1VB1sfm7ot_ClZ7oqmwfYH78iNK5qAs0ufkq_Xl-3yPV1_vq2Wi3VqmeZ9jMAtK6RAIUrpLEXmEJmlFRfSqaJU3EKeUyc0U1JLzDNVlhWKLG5loRyfksfz3aPvfgcMvdl3g2_jSwO51JpxUCqq4KyyvgvBozNHXx9iYAPUjJDMCMmMkMwFUvQ8nD01Iv7rszxepJr_AWZvYfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859923166</pqid></control><display><type>article</type><title>Autonomous Vehicle Safety: An Interdisciplinary Challenge</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Koopman, Philip ; Wagner, Michael</creator><creatorcontrib>Koopman, Philip ; Wagner, Michael</creatorcontrib><description>Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly unstructured environments, to appropriate regulatory approaches. Significant open technical challenges include validating inductive learning in the face of novel environmental inputs and achieving the very high levels of dependability required for full-scale fleet deployment. However, the biggest challenge may be in creating an end-to-end design and deployment process that integrates the safety concerns of a myriad of technical specialties into a unified approach.</description><identifier>ISSN: 1939-1390</identifier><identifier>EISSN: 1941-1197</identifier><identifier>DOI: 10.1109/MITS.2016.2583491</identifier><identifier>CODEN: IITSBO</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous vehicles ; Fault tolerance ; Hardware ; ISO Standards ; Machine learning ; Road traffic ; Safety ; Training ; Vehicle safety ; Vehicles</subject><ispartof>IEEE intelligent transportation systems magazine, 2017-01, Vol.9 (1), p.90-96</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3</citedby><cites>FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7823109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Koopman, Philip</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><title>Autonomous Vehicle Safety: An Interdisciplinary Challenge</title><title>IEEE intelligent transportation systems magazine</title><addtitle>MITS</addtitle><description>Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly unstructured environments, to appropriate regulatory approaches. Significant open technical challenges include validating inductive learning in the face of novel environmental inputs and achieving the very high levels of dependability required for full-scale fleet deployment. However, the biggest challenge may be in creating an end-to-end design and deployment process that integrates the safety concerns of a myriad of technical specialties into a unified approach.</description><subject>Autonomous vehicles</subject><subject>Fault tolerance</subject><subject>Hardware</subject><subject>ISO Standards</subject><subject>Machine learning</subject><subject>Road traffic</subject><subject>Safety</subject><subject>Training</subject><subject>Vehicle safety</subject><subject>Vehicles</subject><issn>1939-1390</issn><issn>1941-1197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsNT-APES8Jy6s1_JeivFj0LFQ6vXJdnM2pQ0qbvJof_eDS3OZQbmfWdeHkLugc4BqH76WG03c0ZBzZnMudBwRSagBaQAOrseZ65T4JreklkIexqLs1wxPSF6MfRd2x26ISTfuKttg8mmcNifnpNFm6zaHn1VB1sfm7ot_ClZ7oqmwfYH78iNK5qAs0ufkq_Xl-3yPV1_vq2Wi3VqmeZ9jMAtK6RAIUrpLEXmEJmlFRfSqaJU3EKeUyc0U1JLzDNVlhWKLG5loRyfksfz3aPvfgcMvdl3g2_jSwO51JpxUCqq4KyyvgvBozNHXx9iYAPUjJDMCMmMkMwFUvQ8nD01Iv7rszxepJr_AWZvYfY</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Koopman, Philip</creator><creator>Wagner, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20170101</creationdate><title>Autonomous Vehicle Safety: An Interdisciplinary Challenge</title><author>Koopman, Philip ; Wagner, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autonomous vehicles</topic><topic>Fault tolerance</topic><topic>Hardware</topic><topic>ISO Standards</topic><topic>Machine learning</topic><topic>Road traffic</topic><topic>Safety</topic><topic>Training</topic><topic>Vehicle safety</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Koopman, Philip</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent transportation systems magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koopman, Philip</au><au>Wagner, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Vehicle Safety: An Interdisciplinary Challenge</atitle><jtitle>IEEE intelligent transportation systems magazine</jtitle><stitle>MITS</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>9</volume><issue>1</issue><spage>90</spage><epage>96</epage><pages>90-96</pages><issn>1939-1390</issn><eissn>1941-1197</eissn><coden>IITSBO</coden><abstract>Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly unstructured environments, to appropriate regulatory approaches. Significant open technical challenges include validating inductive learning in the face of novel environmental inputs and achieving the very high levels of dependability required for full-scale fleet deployment. However, the biggest challenge may be in creating an end-to-end design and deployment process that integrates the safety concerns of a myriad of technical specialties into a unified approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/MITS.2016.2583491</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-1390
ispartof IEEE intelligent transportation systems magazine, 2017-01, Vol.9 (1), p.90-96
issn 1939-1390
1941-1197
language eng
recordid cdi_proquest_journals_1859923166
source IEEE Electronic Library (IEL) Journals
subjects Autonomous vehicles
Fault tolerance
Hardware
ISO Standards
Machine learning
Road traffic
Safety
Training
Vehicle safety
Vehicles
title Autonomous Vehicle Safety: An Interdisciplinary Challenge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Vehicle%20Safety:%20An%20Interdisciplinary%20Challenge&rft.jtitle=IEEE%20intelligent%20transportation%20systems%20magazine&rft.au=Koopman,%20Philip&rft.date=2017-01-01&rft.volume=9&rft.issue=1&rft.spage=90&rft.epage=96&rft.pages=90-96&rft.issn=1939-1390&rft.eissn=1941-1197&rft.coden=IITSBO&rft_id=info:doi/10.1109/MITS.2016.2583491&rft_dat=%3Cproquest_ieee_%3E1859923166%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859923166&rft_id=info:pmid/&rft_ieee_id=7823109&rfr_iscdi=true