Loading…
Autonomous Vehicle Safety: An Interdisciplinary Challenge
Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly...
Saved in:
Published in: | IEEE intelligent transportation systems magazine 2017-01, Vol.9 (1), p.90-96 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3 |
container_end_page | 96 |
container_issue | 1 |
container_start_page | 90 |
container_title | IEEE intelligent transportation systems magazine |
container_volume | 9 |
creator | Koopman, Philip Wagner, Michael |
description | Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly unstructured environments, to appropriate regulatory approaches. Significant open technical challenges include validating inductive learning in the face of novel environmental inputs and achieving the very high levels of dependability required for full-scale fleet deployment. However, the biggest challenge may be in creating an end-to-end design and deployment process that integrates the safety concerns of a myriad of technical specialties into a unified approach. |
doi_str_mv | 10.1109/MITS.2016.2583491 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1859923166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7823109</ieee_id><sourcerecordid>1859923166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-APES8Jy6s1_JeivFj0LFQ6vXJdnM2pQ0qbvJof_eDS3OZQbmfWdeHkLugc4BqH76WG03c0ZBzZnMudBwRSagBaQAOrseZ65T4JreklkIexqLs1wxPSF6MfRd2x26ISTfuKttg8mmcNifnpNFm6zaHn1VB1sfm7ot_ClZ7oqmwfYH78iNK5qAs0ufkq_Xl-3yPV1_vq2Wi3VqmeZ9jMAtK6RAIUrpLEXmEJmlFRfSqaJU3EKeUyc0U1JLzDNVlhWKLG5loRyfksfz3aPvfgcMvdl3g2_jSwO51JpxUCqq4KyyvgvBozNHXx9iYAPUjJDMCMmMkMwFUvQ8nD01Iv7rszxepJr_AWZvYfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859923166</pqid></control><display><type>article</type><title>Autonomous Vehicle Safety: An Interdisciplinary Challenge</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Koopman, Philip ; Wagner, Michael</creator><creatorcontrib>Koopman, Philip ; Wagner, Michael</creatorcontrib><description>Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly unstructured environments, to appropriate regulatory approaches. Significant open technical challenges include validating inductive learning in the face of novel environmental inputs and achieving the very high levels of dependability required for full-scale fleet deployment. However, the biggest challenge may be in creating an end-to-end design and deployment process that integrates the safety concerns of a myriad of technical specialties into a unified approach.</description><identifier>ISSN: 1939-1390</identifier><identifier>EISSN: 1941-1197</identifier><identifier>DOI: 10.1109/MITS.2016.2583491</identifier><identifier>CODEN: IITSBO</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous vehicles ; Fault tolerance ; Hardware ; ISO Standards ; Machine learning ; Road traffic ; Safety ; Training ; Vehicle safety ; Vehicles</subject><ispartof>IEEE intelligent transportation systems magazine, 2017-01, Vol.9 (1), p.90-96</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3</citedby><cites>FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7823109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Koopman, Philip</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><title>Autonomous Vehicle Safety: An Interdisciplinary Challenge</title><title>IEEE intelligent transportation systems magazine</title><addtitle>MITS</addtitle><description>Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly unstructured environments, to appropriate regulatory approaches. Significant open technical challenges include validating inductive learning in the face of novel environmental inputs and achieving the very high levels of dependability required for full-scale fleet deployment. However, the biggest challenge may be in creating an end-to-end design and deployment process that integrates the safety concerns of a myriad of technical specialties into a unified approach.</description><subject>Autonomous vehicles</subject><subject>Fault tolerance</subject><subject>Hardware</subject><subject>ISO Standards</subject><subject>Machine learning</subject><subject>Road traffic</subject><subject>Safety</subject><subject>Training</subject><subject>Vehicle safety</subject><subject>Vehicles</subject><issn>1939-1390</issn><issn>1941-1197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsNT-APES8Jy6s1_JeivFj0LFQ6vXJdnM2pQ0qbvJof_eDS3OZQbmfWdeHkLugc4BqH76WG03c0ZBzZnMudBwRSagBaQAOrseZ65T4JreklkIexqLs1wxPSF6MfRd2x26ISTfuKttg8mmcNifnpNFm6zaHn1VB1sfm7ot_ClZ7oqmwfYH78iNK5qAs0ufkq_Xl-3yPV1_vq2Wi3VqmeZ9jMAtK6RAIUrpLEXmEJmlFRfSqaJU3EKeUyc0U1JLzDNVlhWKLG5loRyfksfz3aPvfgcMvdl3g2_jSwO51JpxUCqq4KyyvgvBozNHXx9iYAPUjJDMCMmMkMwFUvQ8nD01Iv7rszxepJr_AWZvYfY</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Koopman, Philip</creator><creator>Wagner, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20170101</creationdate><title>Autonomous Vehicle Safety: An Interdisciplinary Challenge</title><author>Koopman, Philip ; Wagner, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autonomous vehicles</topic><topic>Fault tolerance</topic><topic>Hardware</topic><topic>ISO Standards</topic><topic>Machine learning</topic><topic>Road traffic</topic><topic>Safety</topic><topic>Training</topic><topic>Vehicle safety</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Koopman, Philip</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent transportation systems magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koopman, Philip</au><au>Wagner, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Vehicle Safety: An Interdisciplinary Challenge</atitle><jtitle>IEEE intelligent transportation systems magazine</jtitle><stitle>MITS</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>9</volume><issue>1</issue><spage>90</spage><epage>96</epage><pages>90-96</pages><issn>1939-1390</issn><eissn>1941-1197</eissn><coden>IITSBO</coden><abstract>Ensuring the safety of fully autonomous vehicles requires a multi-disciplinary approach across all the levels of functional hierarchy, from hardware fault tolerance, to resilient machine learning, to cooperating with humans driving conventional vehicles, to validating systems for operation in highly unstructured environments, to appropriate regulatory approaches. Significant open technical challenges include validating inductive learning in the face of novel environmental inputs and achieving the very high levels of dependability required for full-scale fleet deployment. However, the biggest challenge may be in creating an end-to-end design and deployment process that integrates the safety concerns of a myriad of technical specialties into a unified approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/MITS.2016.2583491</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1390 |
ispartof | IEEE intelligent transportation systems magazine, 2017-01, Vol.9 (1), p.90-96 |
issn | 1939-1390 1941-1197 |
language | eng |
recordid | cdi_proquest_journals_1859923166 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Autonomous vehicles Fault tolerance Hardware ISO Standards Machine learning Road traffic Safety Training Vehicle safety Vehicles |
title | Autonomous Vehicle Safety: An Interdisciplinary Challenge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Vehicle%20Safety:%20An%20Interdisciplinary%20Challenge&rft.jtitle=IEEE%20intelligent%20transportation%20systems%20magazine&rft.au=Koopman,%20Philip&rft.date=2017-01-01&rft.volume=9&rft.issue=1&rft.spage=90&rft.epage=96&rft.pages=90-96&rft.issn=1939-1390&rft.eissn=1941-1197&rft.coden=IITSBO&rft_id=info:doi/10.1109/MITS.2016.2583491&rft_dat=%3Cproquest_ieee_%3E1859923166%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-113c2a54e44b5fc0e2fee2c0d345f6ab63c1880f4926595e876bbde475f65a6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1859923166&rft_id=info:pmid/&rft_ieee_id=7823109&rfr_iscdi=true |