Loading…

Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action

The mode of action of silver nanoparticles (AgNPs) is suggested to be exerted through both Ag + and AgNP dependent mechanisms. Ingestion is one of the major NP exposure routes, and potential effects are often studied using Caco-2 cells, a well-established model for the gut epithelium. MCF-7 cells ar...

Full description

Saved in:
Bibliographic Details
Published in:Nanotoxicology 2016-12, Vol.10 (10), p.1431-1441
Main Authors: van der Zande, Meike, Undas, Anna K., Kramer, Evelien, Monopoli, Marco P., Peters, Ruud J., Garry, David, Antunes Fernandes, Elsa C., Hendriksen, Peter J., Marvin, Hans J.P., Peijnenburg, Ad A., Bouwmeester, Hans
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mode of action of silver nanoparticles (AgNPs) is suggested to be exerted through both Ag + and AgNP dependent mechanisms. Ingestion is one of the major NP exposure routes, and potential effects are often studied using Caco-2 cells, a well-established model for the gut epithelium. MCF-7 cells are epithelial breast cancer cells with extensive well-characterized toxicogenomics profiles. In the present study, we aimed to gain a deeper understanding of the cellular molecular responses in Caco-2 and MCF-7 cells after AgNP exposure in order to evaluate whether epithelial cells derived from different tissues demonstrated similar responses. These insights could possibly reduce the size of cell panels for NP hazard identification screening purposes. AgNPs of 20, 30, 60, and 110 nm, and AgNO 3 were exposed for 6 h and 24 h. AgNPs were shown to be taken up and dissolve intracellularly. Compared with MCF-7 cells, Caco-2 cells showed a higher sensitivity to AgNPs, slower gene expression kinetics and absence of NP size-dependent responses. However, on a molecular level, no significant differences were observed between the two cell types. Transcriptomic analysis showed that Ag(NP) exposure caused (oxidative) stress responses, possibly leading to cell death in both cell lines. There was no indication for effects specifically induced by AgNPs. Responses to AgNPs appeared to be induced by silver ions released from the AgNPs. In conclusion, differences in mRNA responses to AgNPs between Caco-2 and MCF-7 cells were mainly related to timing and magnitude, but not to a different underlying mechanism.
ISSN:1743-5390
1743-5404
DOI:10.1080/17435390.2016.1225132