Loading…

A survey on the state of healthcare upcoding fraud analysis and detection

From its infancy in the 1910s, healthcare group insurance continues to increase, creating a consistently rising burden on the government and taxpayers. The growing number of people enrolled in healthcare programs such as Medicare, along with the enormous volume of money in the healthcare industry, i...

Full description

Saved in:
Bibliographic Details
Published in:Health services and outcomes research methodology 2017-03, Vol.17 (1), p.31-55
Main Authors: Bauder, Richard, Khoshgoftaar, Taghi M., Seliya, Naeem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:From its infancy in the 1910s, healthcare group insurance continues to increase, creating a consistently rising burden on the government and taxpayers. The growing number of people enrolled in healthcare programs such as Medicare, along with the enormous volume of money in the healthcare industry, increases the appeal for and risk of fraudulent activities. One such fraud, known as upcoding, is a means by which a provider can obtain additional reimbursement by coding a certain provided service as a more expensive service than what was actually performed. With the proliferation of data mining techniques and the recent and continued availability of public healthcare data, the application of these techniques towards fraud detection, using this increasing cache of data, has the potential to greatly reduce healthcare costs through a more robust detection of upcoding fraud. Presently, there is a sizable body of healthcare fraud detection research available but upcoding fraud studies are limited. Audit data can be difficult to obtain, limiting the usefulness of supervised learning; therefore, other data mining techniques, such as unsupervised learning, must be explored using mostly unlabeled records in order to detect upcoding fraud. This paper is specific to reviewing upcoding fraud analysis and detection research providing an overview of healthcare, upcoding, and a review of the current data mining techniques used therein.
ISSN:1387-3741
1572-9400
DOI:10.1007/s10742-016-0154-8