Loading…
Improved rough k-means clustering algorithm based on weighted distance measure with Gaussian function
Rough k-means clustering algorithm and its extensions are introduced and successfully applied to real-life data where clusters do not necessarily have crisp boundaries. Experiments with the rough k-means clustering algorithm have shown that it provides a reasonable set of lower and upper bounds for...
Saved in:
Published in: | International journal of computer mathematics 2017-04, Vol.94 (4), p.663-675 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-dac312cefed208dfe9aadb76f402d7e54f38e2259bae46265ef264b849d2f26c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-dac312cefed208dfe9aadb76f402d7e54f38e2259bae46265ef264b849d2f26c3 |
container_end_page | 675 |
container_issue | 4 |
container_start_page | 663 |
container_title | International journal of computer mathematics |
container_volume | 94 |
creator | Zhang, Tengfei Ma, Fumin |
description | Rough k-means clustering algorithm and its extensions are introduced and successfully applied to real-life data where clusters do not necessarily have crisp boundaries. Experiments with the rough k-means clustering algorithm have shown that it provides a reasonable set of lower and upper bounds for a given dataset. However, the same weight was used for all the data objects in a lower or upper approximate set when computing the new centre for each cluster while the different impacts of the objects in a same approximation were ignored. An improved rough k-means clustering based on weighted distance measure with Gaussian function is proposed in this paper. The validity of this algorithm is demonstrated by simulation and experimental analysis. |
doi_str_mv | 10.1080/00207160.2015.1124099 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1869121758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904212778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-dac312cefed208dfe9aadb76f402d7e54f38e2259bae46265ef264b849d2f26c3</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVpoG7Sn1AQ9NLLOiPtp24ppkkDhlySs9BKI1vpruRIuzX599Fi95JDTjOH532ZeQj5zmDNoINrAA4ta2DNgdVrxngFQnwiKwZcFMCb-jNZLUyxQF_I15SeAaATbbMieD8eYviHhsYw7_b0bzGi8onqYU4TRud3VA27EN20H2mvUgaDp0d0u_2Ud-PSpLxGmlNpjkiPGaR3ak7JKU_t7PXkgr8iF1YNCb-d5yV5uv39uPlTbB_u7je_toUuWzYVRumScY0WDYfOWBRKmb5tbAXctFhXtuyQ81r0CqsmP4aWN1XfVcLwvOnykvw89eafXmZMkxxd0jgMymOYk2QCKs5423YZ_fEOfQ5z9Pk6ybpGMM7aeqHqE6VjSCmilYfoRhVfJQO5yJf_5ctFvjzLz7mbU855G-KojiEORk7qdQjRxmzMJVl-XPEGiB6MuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869121758</pqid></control><display><type>article</type><title>Improved rough k-means clustering algorithm based on weighted distance measure with Gaussian function</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zhang, Tengfei ; Ma, Fumin</creator><creatorcontrib>Zhang, Tengfei ; Ma, Fumin</creatorcontrib><description>Rough k-means clustering algorithm and its extensions are introduced and successfully applied to real-life data where clusters do not necessarily have crisp boundaries. Experiments with the rough k-means clustering algorithm have shown that it provides a reasonable set of lower and upper bounds for a given dataset. However, the same weight was used for all the data objects in a lower or upper approximate set when computing the new centre for each cluster while the different impacts of the objects in a same approximation were ignored. An improved rough k-means clustering based on weighted distance measure with Gaussian function is proposed in this paper. The validity of this algorithm is demonstrated by simulation and experimental analysis.</description><identifier>ISSN: 0020-7160</identifier><identifier>EISSN: 1029-0265</identifier><identifier>DOI: 10.1080/00207160.2015.1124099</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algorithms ; Approximation ; Cluster analysis ; Clustering ; Clustering algorithm ; Clusters ; Computer simulation ; Gaussian function ; Mathematical analysis ; Mathematical models ; rough k-means ; rough set theory ; Routing ; Vector quantization ; weighted distance measure</subject><ispartof>International journal of computer mathematics, 2017-04, Vol.94 (4), p.663-675</ispartof><rights>2016 Informa UK Limited, trading as Taylor & Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-dac312cefed208dfe9aadb76f402d7e54f38e2259bae46265ef264b849d2f26c3</citedby><cites>FETCH-LOGICAL-c371t-dac312cefed208dfe9aadb76f402d7e54f38e2259bae46265ef264b849d2f26c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Tengfei</creatorcontrib><creatorcontrib>Ma, Fumin</creatorcontrib><title>Improved rough k-means clustering algorithm based on weighted distance measure with Gaussian function</title><title>International journal of computer mathematics</title><description>Rough k-means clustering algorithm and its extensions are introduced and successfully applied to real-life data where clusters do not necessarily have crisp boundaries. Experiments with the rough k-means clustering algorithm have shown that it provides a reasonable set of lower and upper bounds for a given dataset. However, the same weight was used for all the data objects in a lower or upper approximate set when computing the new centre for each cluster while the different impacts of the objects in a same approximation were ignored. An improved rough k-means clustering based on weighted distance measure with Gaussian function is proposed in this paper. The validity of this algorithm is demonstrated by simulation and experimental analysis.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithm</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Gaussian function</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>rough k-means</subject><subject>rough set theory</subject><subject>Routing</subject><subject>Vector quantization</subject><subject>weighted distance measure</subject><issn>0020-7160</issn><issn>1029-0265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVpoG7Sn1AQ9NLLOiPtp24ppkkDhlySs9BKI1vpruRIuzX599Fi95JDTjOH532ZeQj5zmDNoINrAA4ta2DNgdVrxngFQnwiKwZcFMCb-jNZLUyxQF_I15SeAaATbbMieD8eYviHhsYw7_b0bzGi8onqYU4TRud3VA27EN20H2mvUgaDp0d0u_2Ud-PSpLxGmlNpjkiPGaR3ak7JKU_t7PXkgr8iF1YNCb-d5yV5uv39uPlTbB_u7je_toUuWzYVRumScY0WDYfOWBRKmb5tbAXctFhXtuyQ81r0CqsmP4aWN1XfVcLwvOnykvw89eafXmZMkxxd0jgMymOYk2QCKs5423YZ_fEOfQ5z9Pk6ybpGMM7aeqHqE6VjSCmilYfoRhVfJQO5yJf_5ctFvjzLz7mbU855G-KojiEORk7qdQjRxmzMJVl-XPEGiB6MuA</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Zhang, Tengfei</creator><creator>Ma, Fumin</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170403</creationdate><title>Improved rough k-means clustering algorithm based on weighted distance measure with Gaussian function</title><author>Zhang, Tengfei ; Ma, Fumin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-dac312cefed208dfe9aadb76f402d7e54f38e2259bae46265ef264b849d2f26c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithm</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Gaussian function</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>rough k-means</topic><topic>rough set theory</topic><topic>Routing</topic><topic>Vector quantization</topic><topic>weighted distance measure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tengfei</creatorcontrib><creatorcontrib>Ma, Fumin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tengfei</au><au>Ma, Fumin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved rough k-means clustering algorithm based on weighted distance measure with Gaussian function</atitle><jtitle>International journal of computer mathematics</jtitle><date>2017-04-03</date><risdate>2017</risdate><volume>94</volume><issue>4</issue><spage>663</spage><epage>675</epage><pages>663-675</pages><issn>0020-7160</issn><eissn>1029-0265</eissn><abstract>Rough k-means clustering algorithm and its extensions are introduced and successfully applied to real-life data where clusters do not necessarily have crisp boundaries. Experiments with the rough k-means clustering algorithm have shown that it provides a reasonable set of lower and upper bounds for a given dataset. However, the same weight was used for all the data objects in a lower or upper approximate set when computing the new centre for each cluster while the different impacts of the objects in a same approximation were ignored. An improved rough k-means clustering based on weighted distance measure with Gaussian function is proposed in this paper. The validity of this algorithm is demonstrated by simulation and experimental analysis.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00207160.2015.1124099</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7160 |
ispartof | International journal of computer mathematics, 2017-04, Vol.94 (4), p.663-675 |
issn | 0020-7160 1029-0265 |
language | eng |
recordid | cdi_proquest_journals_1869121758 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms Approximation Cluster analysis Clustering Clustering algorithm Clusters Computer simulation Gaussian function Mathematical analysis Mathematical models rough k-means rough set theory Routing Vector quantization weighted distance measure |
title | Improved rough k-means clustering algorithm based on weighted distance measure with Gaussian function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20rough%20k-means%20clustering%20algorithm%20based%20on%20weighted%20distance%20measure%20with%20Gaussian%20function&rft.jtitle=International%20journal%20of%20computer%20mathematics&rft.au=Zhang,%20Tengfei&rft.date=2017-04-03&rft.volume=94&rft.issue=4&rft.spage=663&rft.epage=675&rft.pages=663-675&rft.issn=0020-7160&rft.eissn=1029-0265&rft_id=info:doi/10.1080/00207160.2015.1124099&rft_dat=%3Cproquest_infor%3E1904212778%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-dac312cefed208dfe9aadb76f402d7e54f38e2259bae46265ef264b849d2f26c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1869121758&rft_id=info:pmid/&rfr_iscdi=true |