Loading…
Denitrification Potential and Influencing Factors of the Riparian Zone Soils in Different Watersheds,Taihu Basin
In the recent decades, most rivers and lakes in the Taihu Basin have experienced degradation from an excess of nutrients. The presence of the nitrogen in water contributes to the increase of eutrophication. The riparian zones are associated with these watercourses and can effectively reduce any exce...
Saved in:
Published in: | Water, air, and soil pollution air, and soil pollution, 2017-03, Vol.228 (3), p.1, Article 108 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the recent decades, most rivers and lakes in the Taihu Basin have experienced degradation from an excess of nutrients. The presence of the nitrogen in water contributes to the increase of eutrophication. The riparian zones are associated with these watercourses and can effectively reduce any excess nitrogen. Soil denitrification is the most significant process in the transfer of nitrogen, which migrates from the terrestrial to the aquatic ecosystem. The relationship between soil denitrification and soil characteristics is well documented. However, the degree of soil denitrification and the main impact factors during different processes within the riparian zones due to gradual changes in the surroundings are not well understood. The present study selected four types of riparian soils that are contained in three different watersheds. The soil denitrification potential was determined within these soils using the acetylene block technique. The results indicate that, among the local factors studied, the soil denitrification potential increased with the intensity of anthropogenic activities, which varied significantly within the basin. This variation indicated a trend in the soil denitrification potential: cropland > woodland > grassland > bareland. Results suggest that soil moisture, nitrate-nitrogen concentration, and microbial biomass carbon concentration are the dominant factors that influence the riparian soil denitrification potential in the Tiaoxi watershed, while soil organic matter is the major factor for soil denitrification potential in the Hexi watershed and nitrate-nitrogen concentration is the dominant factor in the Tianmuhu watershed. |
---|---|
ISSN: | 0049-6979 1573-2932 |
DOI: | 10.1007/s11270-017-3287-7 |