Loading…

Statistical engineering approach to improve the realism of computer-simulated experiments with aircraft trajectory clustering

This article presents a statistical engineering approach for clustering aircraft trajectories. The clustering methodology was developed to address the need to incorporate more realistic trajectories in fast-time computer simulations used to evaluate an aircraft spacing algorithm. The methodology is...

Full description

Saved in:
Bibliographic Details
Published in:Quality engineering 2017-04, Vol.29 (2), p.167-180
Main Authors: Wilson, Sara R., Swieringa, Kurt A., Leonard, Robert D., Freitag, Evan, Edwards, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c286t-7b78d657d0f5d236eb547589ce00c9dadf9d93ebd8fa15ce7a7cfb6fdea8e2063
container_end_page 180
container_issue 2
container_start_page 167
container_title Quality engineering
container_volume 29
creator Wilson, Sara R.
Swieringa, Kurt A.
Leonard, Robert D.
Freitag, Evan
Edwards, David J.
description This article presents a statistical engineering approach for clustering aircraft trajectories. The clustering methodology was developed to address the need to incorporate more realistic trajectories in fast-time computer simulations used to evaluate an aircraft spacing algorithm. The methodology is a combination of Dynamic Time Warping and k-Means clustering, and can be viewed as one of many possible solutions to the immediate problem. The implementation of this statistical engineering approach is also repeatable, scalable, and extendable to the investigation of other air traffic management technologies. Development of the clustering methodology is presented in addition to an application and description of results.
doi_str_mv 10.1080/08982112.2016.1147050
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1873380771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4317904181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-7b78d657d0f5d236eb547589ce00c9dadf9d93ebd8fa15ce7a7cfb6fdea8e2063</originalsourceid><addsrcrecordid>eNp9kMtO4zAUhi3ESJTOPMJIllin2E4TOztQxU1CYsHM2jq1j6mrJA62Q-li3n1SCltW5yz-i_6PkN-cLThT7JKpRgnOxUIwXi84X0pWsRMy41UpiqUQ4pTMDpriIDoj5yltGeNKNeWM_HvOkH3K3kBLsX_xPWL0_QuFYYgBzIbmQH03_W9I8wZpRGh96mhw1IRuGDPGIvlubCGjpfg-TPYO-5zozucNBR9NBJdpjrBFk0PcU9OOKX-0_CQ_HLQJf33eOfl7e_NndV88Pt09rK4fCyNUnQu5lsrWlbTMVVaUNa6rpaxUY5Ax01iwrrFNiWurHPDKoARp3Lp2FkGhYHU5JxfH3GnH64gp620YYz9Vaq5kWSomJZ9U1VFlYkgpotPDtAXiXnOmD6T1F2l9IK0_SU--q6PP9y7EDnYhtlZn2Lchugi98UmX30f8B7kwidY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873380771</pqid></control><display><type>article</type><title>Statistical engineering approach to improve the realism of computer-simulated experiments with aircraft trajectory clustering</title><source>Business Source Ultimate</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Wilson, Sara R. ; Swieringa, Kurt A. ; Leonard, Robert D. ; Freitag, Evan ; Edwards, David J.</creator><creatorcontrib>Wilson, Sara R. ; Swieringa, Kurt A. ; Leonard, Robert D. ; Freitag, Evan ; Edwards, David J.</creatorcontrib><description>This article presents a statistical engineering approach for clustering aircraft trajectories. The clustering methodology was developed to address the need to incorporate more realistic trajectories in fast-time computer simulations used to evaluate an aircraft spacing algorithm. The methodology is a combination of Dynamic Time Warping and k-Means clustering, and can be viewed as one of many possible solutions to the immediate problem. The implementation of this statistical engineering approach is also repeatable, scalable, and extendable to the investigation of other air traffic management technologies. Development of the clustering methodology is presented in addition to an application and description of results.</description><identifier>ISSN: 0898-2112</identifier><identifier>EISSN: 1532-4222</identifier><identifier>DOI: 10.1080/08982112.2016.1147050</identifier><language>eng</language><publisher>Milwaukee: Taylor &amp; Francis</publisher><subject>Aircraft ; dynamic time warping ; Engineering ; gap statistic ; k-means ; Realism ; statistical engineering ; trajectory clustering</subject><ispartof>Quality engineering, 2017-04, Vol.29 (2), p.167-180</ispartof><rights>This article not subject to US copyright law 2017</rights><rights>This article not subject to US copyright law</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-7b78d657d0f5d236eb547589ce00c9dadf9d93ebd8fa15ce7a7cfb6fdea8e2063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Wilson, Sara R.</creatorcontrib><creatorcontrib>Swieringa, Kurt A.</creatorcontrib><creatorcontrib>Leonard, Robert D.</creatorcontrib><creatorcontrib>Freitag, Evan</creatorcontrib><creatorcontrib>Edwards, David J.</creatorcontrib><title>Statistical engineering approach to improve the realism of computer-simulated experiments with aircraft trajectory clustering</title><title>Quality engineering</title><description>This article presents a statistical engineering approach for clustering aircraft trajectories. The clustering methodology was developed to address the need to incorporate more realistic trajectories in fast-time computer simulations used to evaluate an aircraft spacing algorithm. The methodology is a combination of Dynamic Time Warping and k-Means clustering, and can be viewed as one of many possible solutions to the immediate problem. The implementation of this statistical engineering approach is also repeatable, scalable, and extendable to the investigation of other air traffic management technologies. Development of the clustering methodology is presented in addition to an application and description of results.</description><subject>Aircraft</subject><subject>dynamic time warping</subject><subject>Engineering</subject><subject>gap statistic</subject><subject>k-means</subject><subject>Realism</subject><subject>statistical engineering</subject><subject>trajectory clustering</subject><issn>0898-2112</issn><issn>1532-4222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtO4zAUhi3ESJTOPMJIllin2E4TOztQxU1CYsHM2jq1j6mrJA62Q-li3n1SCltW5yz-i_6PkN-cLThT7JKpRgnOxUIwXi84X0pWsRMy41UpiqUQ4pTMDpriIDoj5yltGeNKNeWM_HvOkH3K3kBLsX_xPWL0_QuFYYgBzIbmQH03_W9I8wZpRGh96mhw1IRuGDPGIvlubCGjpfg-TPYO-5zozucNBR9NBJdpjrBFk0PcU9OOKX-0_CQ_HLQJf33eOfl7e_NndV88Pt09rK4fCyNUnQu5lsrWlbTMVVaUNa6rpaxUY5Ax01iwrrFNiWurHPDKoARp3Lp2FkGhYHU5JxfH3GnH64gp620YYz9Vaq5kWSomJZ9U1VFlYkgpotPDtAXiXnOmD6T1F2l9IK0_SU--q6PP9y7EDnYhtlZn2Lchugi98UmX30f8B7kwidY</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Wilson, Sara R.</creator><creator>Swieringa, Kurt A.</creator><creator>Leonard, Robert D.</creator><creator>Freitag, Evan</creator><creator>Edwards, David J.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>U9A</scope></search><sort><creationdate>20170403</creationdate><title>Statistical engineering approach to improve the realism of computer-simulated experiments with aircraft trajectory clustering</title><author>Wilson, Sara R. ; Swieringa, Kurt A. ; Leonard, Robert D. ; Freitag, Evan ; Edwards, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-7b78d657d0f5d236eb547589ce00c9dadf9d93ebd8fa15ce7a7cfb6fdea8e2063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aircraft</topic><topic>dynamic time warping</topic><topic>Engineering</topic><topic>gap statistic</topic><topic>k-means</topic><topic>Realism</topic><topic>statistical engineering</topic><topic>trajectory clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Sara R.</creatorcontrib><creatorcontrib>Swieringa, Kurt A.</creatorcontrib><creatorcontrib>Leonard, Robert D.</creatorcontrib><creatorcontrib>Freitag, Evan</creatorcontrib><creatorcontrib>Edwards, David J.</creatorcontrib><collection>CrossRef</collection><jtitle>Quality engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Sara R.</au><au>Swieringa, Kurt A.</au><au>Leonard, Robert D.</au><au>Freitag, Evan</au><au>Edwards, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical engineering approach to improve the realism of computer-simulated experiments with aircraft trajectory clustering</atitle><jtitle>Quality engineering</jtitle><date>2017-04-03</date><risdate>2017</risdate><volume>29</volume><issue>2</issue><spage>167</spage><epage>180</epage><pages>167-180</pages><issn>0898-2112</issn><eissn>1532-4222</eissn><abstract>This article presents a statistical engineering approach for clustering aircraft trajectories. The clustering methodology was developed to address the need to incorporate more realistic trajectories in fast-time computer simulations used to evaluate an aircraft spacing algorithm. The methodology is a combination of Dynamic Time Warping and k-Means clustering, and can be viewed as one of many possible solutions to the immediate problem. The implementation of this statistical engineering approach is also repeatable, scalable, and extendable to the investigation of other air traffic management technologies. Development of the clustering methodology is presented in addition to an application and description of results.</abstract><cop>Milwaukee</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/08982112.2016.1147050</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0898-2112
ispartof Quality engineering, 2017-04, Vol.29 (2), p.167-180
issn 0898-2112
1532-4222
language eng
recordid cdi_proquest_journals_1873380771
source Business Source Ultimate; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Aircraft
dynamic time warping
Engineering
gap statistic
k-means
Realism
statistical engineering
trajectory clustering
title Statistical engineering approach to improve the realism of computer-simulated experiments with aircraft trajectory clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20engineering%20approach%20to%20improve%20the%20realism%20of%20computer-simulated%20experiments%20with%20aircraft%20trajectory%20clustering&rft.jtitle=Quality%20engineering&rft.au=Wilson,%20Sara%20R.&rft.date=2017-04-03&rft.volume=29&rft.issue=2&rft.spage=167&rft.epage=180&rft.pages=167-180&rft.issn=0898-2112&rft.eissn=1532-4222&rft_id=info:doi/10.1080/08982112.2016.1147050&rft_dat=%3Cproquest_infor%3E4317904181%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-7b78d657d0f5d236eb547589ce00c9dadf9d93ebd8fa15ce7a7cfb6fdea8e2063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1873380771&rft_id=info:pmid/&rfr_iscdi=true