Loading…

Growth rates and relative change in non-structural carbohydrates of dipterocarp seedlings in response to light acclimation

Background: Acclimation to light is a driver of tropical forest dynamics and key to understanding the coexistence of dipterocarps, and how their demographic rates and traits trade-off. Aims: We examined light niche divergence in six dipterocarp species and hypothesised that seedlings can be function...

Full description

Saved in:
Bibliographic Details
Published in:Plant ecology & diversity 2016-11, Vol.9 (5-6), p.491-504
Main Authors: Saner, Philippe, Philipson, Christopher D., Peters, Shaun, Keller, Felix, Bigler, Laurent, Turnbull, Lindsay A., Hector, Andy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Acclimation to light is a driver of tropical forest dynamics and key to understanding the coexistence of dipterocarps, and how their demographic rates and traits trade-off. Aims: We examined light niche divergence in six dipterocarp species and hypothesised that seedlings can be functionally grouped, and allocate resources to either growth or storage in response to light changes. Methods: A pot experiment was performed to measure size-specific growth rate, wood density and total non-structural carbohydrate (NSC) concentrations of dipterocarp seedlings exposed to a simulated gap opening. Results: Light-demanding species responded to a gap opening with increased growth and decreased wood density, whereas shade-tolerant species showed a greater relative increase in NSC concentration. Iditol - an alditol - was identified, and Dryobalanops lanceolata responded to a gap opening with a significantly smaller increase in alditol concentration compared to other species. Conclusions: We group light-demanding and shade-tolerant species based on their acclimation to light and show that a generalist species is unique based on its response of NSC concentration to a gap opening. Our findings emphasise that the ecology of these species needs to be further studied in the context of their physiology to support their effective use in large-scale forest restoration efforts.
ISSN:1755-0874
1755-1668
DOI:10.1080/17550874.2016.1227385