Loading…
Control of a gantry crane using input-shaping schemes with distributed delay
This paper presents simulation and real-time implementation of input-shaping schemes with a distributed delay for control of a gantry crane. Both open-loop and closed-loop input-shaping schemes are considered. Zero vibration and zero vibration derivative input shapers are designed for performance co...
Saved in:
Published in: | Transactions of the Institute of Measurement and Control 2017-03, Vol.39 (3), p.361-370 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents simulation and real-time implementation of input-shaping schemes with a distributed delay for control of a gantry crane. Both open-loop and closed-loop input-shaping schemes are considered. Zero vibration and zero vibration derivative input shapers are designed for performance comparison in terms of trolley position response and level of sway reduction. Simulation and experimental results have shown that all the shapers are able to reduce payload sway significantly while maintaining satisfactory position response. Investigations with different cable lengths that correspond to ±20% changes in the sway frequency have shown the distributed delay-based shaper has asymmetric robustness behaviour. The shaper provides highest robustness for the case of 20% increase in the sway frequency but lower robustness for the case of 20% decrease. However, other schemes give symmetric robustness behaviour for both cases. |
---|---|
ISSN: | 0142-3312 1477-0369 |
DOI: | 10.1177/0142331215607615 |