Loading…

Measuring the Minority-Carrier Diffusion Length of n-Type In^sub 0.53^Ga^sub 0.47^As Epilayers Using Surface Photovoltage

We report measurements of the minority-carrier diffusion length of n-type In0.53Ga0.47As epilayer samples using the surface photovoltage (SPV) method, and the minority-carrier lifetime of the same samples obtained by the microwave photoconductivity decay ([mu]-PCD) method. The minority-carrier diffu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2017-04, Vol.46 (4), p.2061
Main Authors: Li, Ping, Tang, Hengjing, Li, Tao, Li, Xue, Shao, Xiumei, Pavelka, Tibor, Huang, Li, Gong, Haimei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page 2061
container_title Journal of electronic materials
container_volume 46
creator Li, Ping
Tang, Hengjing
Li, Tao
Li, Xue
Shao, Xiumei
Pavelka, Tibor
Huang, Li
Gong, Haimei
description We report measurements of the minority-carrier diffusion length of n-type In0.53Ga0.47As epilayer samples using the surface photovoltage (SPV) method, and the minority-carrier lifetime of the same samples obtained by the microwave photoconductivity decay ([mu]-PCD) method. The minority-carrier diffusion length was determined from the surface photovoltage and the optical absorption coefficient of the material. By scanning the SPV probe over the sample, the difference in surface photovoltage could be measured, as well as enabling surface photovoltage mapping. Samples having two different doping concentrations were used: sample A with 3 × 1016 cm-3 and sample B with 1 × 1016 cm-3, having minority-carrier diffusion length at room temperature of 5.59 [mu]m and 6.3 [mu]m, respectively. Meanwhile, sample uniformity was investigated using SPV for the first time. Lifetime measurements were performed on the n-type In0.53Ga0.47As epilayer samples using the [mu]-PCD technique, obtaining the minority-carrier diffusion length indirectly. Comparison of the minority-carrier diffusion length values obtained from SPV versus [mu]-PCD showed good consistency. Therefore, the presented method could be useful for characterization of the minority-carrier diffusion length of wafers.
doi_str_mv 10.1007/s11664-016-5124-y
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1874042333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4317425841</sourcerecordid><originalsourceid>FETCH-proquest_journals_18740423333</originalsourceid><addsrcrecordid>eNqNjM1KxDAUhYMoWH8ewN0F1xlzm6TtVsbRERwQHMFVhyhpm6EkNTcR-vaOMA_g2ZwPzsdh7AbFAoWo7wixqhQXWHGNpeLzCStQK8mxqT5OWSFkhVyXUp-zC6K9EKixwYLNG2soR-d7SIOFjfMhujTzpYnR2QgPrusyueDhxfo-DRA68Hw7TxaefUv5E8RCy_bJHFnV7T3BanKjmW0keKe_67ccO_Nl4XUIKfyEMZneXrGzzoxkr499yW4fV9vlmk8xfGdLabcPOfrDtMOmVkKV8pD_Wb_J1lM2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874042333</pqid></control><display><type>article</type><title>Measuring the Minority-Carrier Diffusion Length of n-Type In^sub 0.53^Ga^sub 0.47^As Epilayers Using Surface Photovoltage</title><source>Springer Nature</source><creator>Li, Ping ; Tang, Hengjing ; Li, Tao ; Li, Xue ; Shao, Xiumei ; Pavelka, Tibor ; Huang, Li ; Gong, Haimei</creator><creatorcontrib>Li, Ping ; Tang, Hengjing ; Li, Tao ; Li, Xue ; Shao, Xiumei ; Pavelka, Tibor ; Huang, Li ; Gong, Haimei</creatorcontrib><description>We report measurements of the minority-carrier diffusion length of n-type In0.53Ga0.47As epilayer samples using the surface photovoltage (SPV) method, and the minority-carrier lifetime of the same samples obtained by the microwave photoconductivity decay ([mu]-PCD) method. The minority-carrier diffusion length was determined from the surface photovoltage and the optical absorption coefficient of the material. By scanning the SPV probe over the sample, the difference in surface photovoltage could be measured, as well as enabling surface photovoltage mapping. Samples having two different doping concentrations were used: sample A with 3 × 1016 cm-3 and sample B with 1 × 1016 cm-3, having minority-carrier diffusion length at room temperature of 5.59 [mu]m and 6.3 [mu]m, respectively. Meanwhile, sample uniformity was investigated using SPV for the first time. Lifetime measurements were performed on the n-type In0.53Ga0.47As epilayer samples using the [mu]-PCD technique, obtaining the minority-carrier diffusion length indirectly. Comparison of the minority-carrier diffusion length values obtained from SPV versus [mu]-PCD showed good consistency. Therefore, the presented method could be useful for characterization of the minority-carrier diffusion length of wafers.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-016-5124-y</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Electronics ; Materials science ; Photovoltaic cells</subject><ispartof>Journal of electronic materials, 2017-04, Vol.46 (4), p.2061</ispartof><rights>Journal of Electronic Materials is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Tang, Hengjing</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Shao, Xiumei</creatorcontrib><creatorcontrib>Pavelka, Tibor</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Gong, Haimei</creatorcontrib><title>Measuring the Minority-Carrier Diffusion Length of n-Type In^sub 0.53^Ga^sub 0.47^As Epilayers Using Surface Photovoltage</title><title>Journal of electronic materials</title><description>We report measurements of the minority-carrier diffusion length of n-type In0.53Ga0.47As epilayer samples using the surface photovoltage (SPV) method, and the minority-carrier lifetime of the same samples obtained by the microwave photoconductivity decay ([mu]-PCD) method. The minority-carrier diffusion length was determined from the surface photovoltage and the optical absorption coefficient of the material. By scanning the SPV probe over the sample, the difference in surface photovoltage could be measured, as well as enabling surface photovoltage mapping. Samples having two different doping concentrations were used: sample A with 3 × 1016 cm-3 and sample B with 1 × 1016 cm-3, having minority-carrier diffusion length at room temperature of 5.59 [mu]m and 6.3 [mu]m, respectively. Meanwhile, sample uniformity was investigated using SPV for the first time. Lifetime measurements were performed on the n-type In0.53Ga0.47As epilayer samples using the [mu]-PCD technique, obtaining the minority-carrier diffusion length indirectly. Comparison of the minority-carrier diffusion length values obtained from SPV versus [mu]-PCD showed good consistency. Therefore, the presented method could be useful for characterization of the minority-carrier diffusion length of wafers.</description><subject>Electronics</subject><subject>Materials science</subject><subject>Photovoltaic cells</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNjM1KxDAUhYMoWH8ewN0F1xlzm6TtVsbRERwQHMFVhyhpm6EkNTcR-vaOMA_g2ZwPzsdh7AbFAoWo7wixqhQXWHGNpeLzCStQK8mxqT5OWSFkhVyXUp-zC6K9EKixwYLNG2soR-d7SIOFjfMhujTzpYnR2QgPrusyueDhxfo-DRA68Hw7TxaefUv5E8RCy_bJHFnV7T3BanKjmW0keKe_67ccO_Nl4XUIKfyEMZneXrGzzoxkr499yW4fV9vlmk8xfGdLabcPOfrDtMOmVkKV8pD_Wb_J1lM2</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Li, Ping</creator><creator>Tang, Hengjing</creator><creator>Li, Tao</creator><creator>Li, Xue</creator><creator>Shao, Xiumei</creator><creator>Pavelka, Tibor</creator><creator>Huang, Li</creator><creator>Gong, Haimei</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170401</creationdate><title>Measuring the Minority-Carrier Diffusion Length of n-Type In^sub 0.53^Ga^sub 0.47^As Epilayers Using Surface Photovoltage</title><author>Li, Ping ; Tang, Hengjing ; Li, Tao ; Li, Xue ; Shao, Xiumei ; Pavelka, Tibor ; Huang, Li ; Gong, Haimei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_18740423333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electronics</topic><topic>Materials science</topic><topic>Photovoltaic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Tang, Hengjing</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Shao, Xiumei</creatorcontrib><creatorcontrib>Pavelka, Tibor</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Gong, Haimei</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ping</au><au>Tang, Hengjing</au><au>Li, Tao</au><au>Li, Xue</au><au>Shao, Xiumei</au><au>Pavelka, Tibor</au><au>Huang, Li</au><au>Gong, Haimei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Minority-Carrier Diffusion Length of n-Type In^sub 0.53^Ga^sub 0.47^As Epilayers Using Surface Photovoltage</atitle><jtitle>Journal of electronic materials</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>46</volume><issue>4</issue><spage>2061</spage><pages>2061-</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>We report measurements of the minority-carrier diffusion length of n-type In0.53Ga0.47As epilayer samples using the surface photovoltage (SPV) method, and the minority-carrier lifetime of the same samples obtained by the microwave photoconductivity decay ([mu]-PCD) method. The minority-carrier diffusion length was determined from the surface photovoltage and the optical absorption coefficient of the material. By scanning the SPV probe over the sample, the difference in surface photovoltage could be measured, as well as enabling surface photovoltage mapping. Samples having two different doping concentrations were used: sample A with 3 × 1016 cm-3 and sample B with 1 × 1016 cm-3, having minority-carrier diffusion length at room temperature of 5.59 [mu]m and 6.3 [mu]m, respectively. Meanwhile, sample uniformity was investigated using SPV for the first time. Lifetime measurements were performed on the n-type In0.53Ga0.47As epilayer samples using the [mu]-PCD technique, obtaining the minority-carrier diffusion length indirectly. Comparison of the minority-carrier diffusion length values obtained from SPV versus [mu]-PCD showed good consistency. Therefore, the presented method could be useful for characterization of the minority-carrier diffusion length of wafers.</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-016-5124-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2017-04, Vol.46 (4), p.2061
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1874042333
source Springer Nature
subjects Electronics
Materials science
Photovoltaic cells
title Measuring the Minority-Carrier Diffusion Length of n-Type In^sub 0.53^Ga^sub 0.47^As Epilayers Using Surface Photovoltage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Minority-Carrier%20Diffusion%20Length%20of%20n-Type%20In%5Esub%200.53%5EGa%5Esub%200.47%5EAs%20Epilayers%20Using%20Surface%20Photovoltage&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Li,%20Ping&rft.date=2017-04-01&rft.volume=46&rft.issue=4&rft.spage=2061&rft.pages=2061-&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-016-5124-y&rft_dat=%3Cproquest%3E4317425841%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_18740423333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1874042333&rft_id=info:pmid/&rfr_iscdi=true