Loading…
Defectivity Study for Directed Self-Assembly (DSA) Contact Hole Shrink
Directed Self-Assembly (DSA) is one of the candidates for scaling feature sizes beyond 10 nm node. DSA has shown the capability for pitch reduction, contact hole (CH) shrinks and improvement in pattern profile and pattern collapse margin. Defectivity is one of the critical criteria for implementatio...
Saved in:
Published in: | Journal of Photopolymer Science and Technology 2016/12/15, Vol.29(6), pp.793-796 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Directed Self-Assembly (DSA) is one of the candidates for scaling feature sizes beyond 10 nm node. DSA has shown the capability for pitch reduction, contact hole (CH) shrinks and improvement in pattern profile and pattern collapse margin. Defectivity is one of the critical criteria for implementation of DSA as a technically viable approach. However, only few defectivity studies of DSA shrink in various topography have been reported. In this paper, we investigated wafer-level defectivity of DSA shrink at various stages of the DSA patterning process. The contribution from each process step and materials are partitioned and categorized. The DSA defectivity was reduced by optimizing the material quality, surface treatment and pattern transfer processes. Systematic defect sources over the wafer map have been reduced. Finally, an outlook as to the guidelines and challenges to DSA CH shrinkage process will be discussed. |
---|---|
ISSN: | 0914-9244 1349-6336 |
DOI: | 10.2494/photopolymer.29.793 |