Loading…

Parameterized gait pattern generator based on linear inverted pendulum model with natural ZMP references

This paper presents a parameterized gait generator based on linear inverted pendulum model (LIPM) theory, which allows users to generate a natural gait pattern with desired step sizes. Five types of zero moment point (ZMP) components are proposed for formulating a natural ZMP reference, where ZMP mo...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge engineering review 2017, Vol.32, Article e3
Main Authors: Ho, Ya-Fang, Li, Tzuu-Hseng S., Kuo, Ping-Huan, Ye, Yan-Ting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a parameterized gait generator based on linear inverted pendulum model (LIPM) theory, which allows users to generate a natural gait pattern with desired step sizes. Five types of zero moment point (ZMP) components are proposed for formulating a natural ZMP reference, where ZMP moves continuously during single support phases instead of staying at a fixed point in the sagittal and lateral plane. The corresponding center of mass (CoM) trajectories for these components are derived by LIPM theory. To generate a parameterized gait pattern with user-defined parameters, a gait planning algorithm is proposed, which determines related coefficients and boundary conditions of the CoM trajectory for each step. The proposed parameterized gait generator also provides a concept for users to generate gait patterns with self-defined ZMP references by using different components. Finally, the feasibility of the proposed method is validated by the experimental results with a teen-sized humanoid robot, David, which won first place in the sprint event at the 20th Federation of International Robot-soccer Association (FIRA) RoboWorld Cup.
ISSN:0269-8889
1469-8005
DOI:10.1017/S0269888916000138