Loading…
Parameterized gait pattern generator based on linear inverted pendulum model with natural ZMP references
This paper presents a parameterized gait generator based on linear inverted pendulum model (LIPM) theory, which allows users to generate a natural gait pattern with desired step sizes. Five types of zero moment point (ZMP) components are proposed for formulating a natural ZMP reference, where ZMP mo...
Saved in:
Published in: | Knowledge engineering review 2017, Vol.32, Article e3 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a parameterized gait generator based on linear inverted
pendulum model (LIPM) theory, which allows users to generate a natural gait
pattern with desired step sizes. Five types of zero moment point (ZMP)
components are proposed for formulating a natural ZMP reference, where ZMP moves
continuously during single support phases instead of staying at a fixed point in
the sagittal and lateral plane. The corresponding center of mass (CoM)
trajectories for these components are derived by LIPM theory. To generate a
parameterized gait pattern with user-defined parameters, a gait planning
algorithm is proposed, which determines related coefficients and boundary
conditions of the CoM trajectory for each step. The proposed parameterized gait
generator also provides a concept for users to generate gait patterns with
self-defined ZMP references by using different components. Finally, the
feasibility of the proposed method is validated by the experimental results with
a teen-sized humanoid robot, David, which won first place in the sprint event at
the 20th Federation of International Robot-soccer Association (FIRA) RoboWorld
Cup. |
---|---|
ISSN: | 0269-8889 1469-8005 |
DOI: | 10.1017/S0269888916000138 |