Loading…

Influence of iron doping on the structural, chemical, and optoelectronic properties of sputtered zinc oxide thin films

Iron (Fe)-doped zinc oxide (ZnO) thin films were deposited using two techniques: (i) radio-frequency (RF) sputtering of Fe-doped ZnO targets, and (ii) co-sputtering, where ZnO was RF-sputtered and iron was direct-current (DC)-sputtered. The as-deposited films were polycrystalline, with predominant g...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2016-10, Vol.31 (20), p.3230-3239
Main Authors: Al-Kuhaili, Mohammad F., Durrani, Sardar M.A., El-Said, Ayman S., Heller, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iron (Fe)-doped zinc oxide (ZnO) thin films were deposited using two techniques: (i) radio-frequency (RF) sputtering of Fe-doped ZnO targets, and (ii) co-sputtering, where ZnO was RF-sputtered and iron was direct-current (DC)-sputtered. The as-deposited films were polycrystalline, with predominant growth along the (002) direction of hexagonal ZnO, and possessed a considerable concentration of oxygen vacancies. From an optoelectronic point of view, the films were highly transparent, with a band gap of 3.25 eV, and had electrical resistivity values in the range of 100–103 Ω cm. To improve the electrical conductivity of the films, they were annealed in a vacuum and in a hydrogen atmosphere. The annealing process did not affect the optical properties of the films. However, there were substantial structural and chemical changes in the films. Moreover, the electrical conductivity of the films was enhanced drastically upon annealing in hydrogen, where the electrical resistivity was reduced to 3.2 × 10−3 Ω cm.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2016.343