Loading…

Effects of Cu content on the microstructure, mechanical property, and hot tearing susceptibility of die casting hypereutectic Al–22Si–0.4Mg alloy

The effects of Cu content on the microstructure, mechanical property, and hot tearing susceptibility of die casting Al–22Si–0.4Mg alloy have been investigated. Different Cu contents (1.5, 2.5, 3.5, 4.5 wt%) were added in Al–22Si–0.4Mg alloy. In the as-cast microstructure, the amount, volume fraction...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2016-11, Vol.31 (22), p.3629-3637
Main Authors: Cheng, Daqiang, Zhang, Liang, Wu, Guohua, Mao, Jimei, Liu, Wencai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of Cu content on the microstructure, mechanical property, and hot tearing susceptibility of die casting Al–22Si–0.4Mg alloy have been investigated. Different Cu contents (1.5, 2.5, 3.5, 4.5 wt%) were added in Al–22Si–0.4Mg alloy. In the as-cast microstructure, the amount, volume fraction, and average size of Al2Cu phase increase with more Cu addition. The morphology of grain boundary white Al2Cu phase turns from particle to lump. The UTS (ultimate tensile strength) of Al–22Si–xCu–0.4Mg alloy improves with Cu added, which is mainly caused by the strengthening effect of intergranular Al2Cu. The hot tearing susceptibility apparently rises with Cu content increased, which is due to longer quaternary eutectic reaction time, larger amount of residual intergranular Cu-rich liquid film spreading out over α-Al grain boundary, and higher quaternary eutectic reaction temperature. Considering both the mechanical property and hot tearing susceptibility, optimal Cu content for die casting Al–22Si–0.4Mg alloy found in this paper is 2.5 wt%.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2016.388