Loading…
Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method
Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying proce...
Saved in:
Published in: | Drying technology 2017-04, Vol.35 (5), p.534-544 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3 |
container_end_page | 544 |
container_issue | 5 |
container_start_page | 534 |
container_title | Drying technology |
container_volume | 35 |
creator | Salgado, Mario A. Heredia Neto da Silva, Fernando José |
description | Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying processes; however, obtaining a suitable database is a resource consuming task. Based on the Taguchi method, nine experiments were defined to set up a training database and to develop an ANN model. A high Pearson correlation coefficient was verified when comparing the drying kinetic curve generated by the ANN model with the one obtained during the validation experiments. |
doi_str_mv | 10.1080/07373937.2016.1187162 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1875406474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904249824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3</originalsourceid><addsrcrecordid>eNp9kc2KFTEQhYMoeB19BCHgQjd9rep0-seVMqgzMCLIuA7pTnI7Y7pzzQ_DfQTf2o533LhwUweK7xyKOoS8RNgj9PAWOtaxgXX7GrDdI_YdtvUjskPO6qpmAI_JrjBVgZ6SZzHeAUCPA9-RX1-80s6uB-oNPcqjDnSxztGo7-VB0-iy2kSFU0FyLFOGZI2drHR01Tn8kXTvw4_4jn7TKk_J-rXEpVnTFKRdi0vJJEcZt80cfD7M9FYe8jTb15EuOs1ePSdPjHRRv3jQC_L908fby6vq5uvn68sPN9XEOkyVHEcAPQDnxnRDoxFG1I1haIZWmb5VnI-ADJra9MjNxLBtu8YYzQdlOEp2Qd6cc4_B_8w6JrHYOGnn5Kp9jgKHzdsMfd1s6Kt_0Dufw7pdJ7Yn8wbapisUP1NT8DEGbcQx2EWGk0AQpSDxtyBRChIPBW2-92efXY0Pi9xe6JRI8uR8MEGuk42C_T_iN41GmRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875406474</pqid></control><display><type>article</type><title>Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Salgado, Mario A. Heredia ; Neto da Silva, Fernando José</creator><creatorcontrib>Salgado, Mario A. Heredia ; Neto da Silva, Fernando José</creatorcontrib><description>Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying processes; however, obtaining a suitable database is a resource consuming task. Based on the Taguchi method, nine experiments were defined to set up a training database and to develop an ANN model. A high Pearson correlation coefficient was verified when comparing the drying kinetic curve generated by the ANN model with the one obtained during the validation experiments.</description><identifier>ISSN: 0737-3937</identifier><identifier>EISSN: 1532-2300</identifier><identifier>DOI: 10.1080/07373937.2016.1187162</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Artificial neural networks ; Cracks ; Drying ; Drying agents ; drying kinetics ; Kinetics ; Learning theory ; Neural networks ; paper mill sewage sludge ; Pulp & paper mills ; Sewage sludge ; Sludge ; Taguchi method ; Taguchi methods ; Training</subject><ispartof>Drying technology, 2017-04, Vol.35 (5), p.534-544</ispartof><rights>2017 Taylor & Francis 2017</rights><rights>2017 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3</citedby><cites>FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3</cites><orcidid>0000-0001-7346-6467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Salgado, Mario A. Heredia</creatorcontrib><creatorcontrib>Neto da Silva, Fernando José</creatorcontrib><title>Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method</title><title>Drying technology</title><description>Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying processes; however, obtaining a suitable database is a resource consuming task. Based on the Taguchi method, nine experiments were defined to set up a training database and to develop an ANN model. A high Pearson correlation coefficient was verified when comparing the drying kinetic curve generated by the ANN model with the one obtained during the validation experiments.</description><subject>Artificial neural networks</subject><subject>Cracks</subject><subject>Drying</subject><subject>Drying agents</subject><subject>drying kinetics</subject><subject>Kinetics</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>paper mill sewage sludge</subject><subject>Pulp & paper mills</subject><subject>Sewage sludge</subject><subject>Sludge</subject><subject>Taguchi method</subject><subject>Taguchi methods</subject><subject>Training</subject><issn>0737-3937</issn><issn>1532-2300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFTEQhYMoeB19BCHgQjd9rep0-seVMqgzMCLIuA7pTnI7Y7pzzQ_DfQTf2o533LhwUweK7xyKOoS8RNgj9PAWOtaxgXX7GrDdI_YdtvUjskPO6qpmAI_JrjBVgZ6SZzHeAUCPA9-RX1-80s6uB-oNPcqjDnSxztGo7-VB0-iy2kSFU0FyLFOGZI2drHR01Tn8kXTvw4_4jn7TKk_J-rXEpVnTFKRdi0vJJEcZt80cfD7M9FYe8jTb15EuOs1ePSdPjHRRv3jQC_L908fby6vq5uvn68sPN9XEOkyVHEcAPQDnxnRDoxFG1I1haIZWmb5VnI-ADJra9MjNxLBtu8YYzQdlOEp2Qd6cc4_B_8w6JrHYOGnn5Kp9jgKHzdsMfd1s6Kt_0Dufw7pdJ7Yn8wbapisUP1NT8DEGbcQx2EWGk0AQpSDxtyBRChIPBW2-92efXY0Pi9xe6JRI8uR8MEGuk42C_T_iN41GmRk</recordid><startdate>20170404</startdate><enddate>20170404</enddate><creator>Salgado, Mario A. Heredia</creator><creator>Neto da Silva, Fernando José</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-7346-6467</orcidid></search><sort><creationdate>20170404</creationdate><title>Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method</title><author>Salgado, Mario A. Heredia ; Neto da Silva, Fernando José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Cracks</topic><topic>Drying</topic><topic>Drying agents</topic><topic>drying kinetics</topic><topic>Kinetics</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>paper mill sewage sludge</topic><topic>Pulp & paper mills</topic><topic>Sewage sludge</topic><topic>Sludge</topic><topic>Taguchi method</topic><topic>Taguchi methods</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salgado, Mario A. Heredia</creatorcontrib><creatorcontrib>Neto da Silva, Fernando José</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Drying technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salgado, Mario A. Heredia</au><au>Neto da Silva, Fernando José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method</atitle><jtitle>Drying technology</jtitle><date>2017-04-04</date><risdate>2017</risdate><volume>35</volume><issue>5</issue><spage>534</spage><epage>544</epage><pages>534-544</pages><issn>0737-3937</issn><eissn>1532-2300</eissn><abstract>Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying processes; however, obtaining a suitable database is a resource consuming task. Based on the Taguchi method, nine experiments were defined to set up a training database and to develop an ANN model. A high Pearson correlation coefficient was verified when comparing the drying kinetic curve generated by the ANN model with the one obtained during the validation experiments.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/07373937.2016.1187162</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7346-6467</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-3937 |
ispartof | Drying technology, 2017-04, Vol.35 (5), p.534-544 |
issn | 0737-3937 1532-2300 |
language | eng |
recordid | cdi_proquest_journals_1875406474 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Artificial neural networks Cracks Drying Drying agents drying kinetics Kinetics Learning theory Neural networks paper mill sewage sludge Pulp & paper mills Sewage sludge Sludge Taguchi method Taguchi methods Training |
title | Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20paper%20mill%20sewage%20sludge%20drying%20using%20artificial%20neural%20networks:%20Reduction%20of%20the%20training%20database%20through%20Taguchi's%20method&rft.jtitle=Drying%20technology&rft.au=Salgado,%20Mario%20A.%20Heredia&rft.date=2017-04-04&rft.volume=35&rft.issue=5&rft.spage=534&rft.epage=544&rft.pages=534-544&rft.issn=0737-3937&rft.eissn=1532-2300&rft_id=info:doi/10.1080/07373937.2016.1187162&rft_dat=%3Cproquest_cross%3E1904249824%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1875406474&rft_id=info:pmid/&rfr_iscdi=true |