Loading…

Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method

Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying proce...

Full description

Saved in:
Bibliographic Details
Published in:Drying technology 2017-04, Vol.35 (5), p.534-544
Main Authors: Salgado, Mario A. Heredia, Neto da Silva, Fernando José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3
cites cdi_FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3
container_end_page 544
container_issue 5
container_start_page 534
container_title Drying technology
container_volume 35
creator Salgado, Mario A. Heredia
Neto da Silva, Fernando José
description Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying processes; however, obtaining a suitable database is a resource consuming task. Based on the Taguchi method, nine experiments were defined to set up a training database and to develop an ANN model. A high Pearson correlation coefficient was verified when comparing the drying kinetic curve generated by the ANN model with the one obtained during the validation experiments.
doi_str_mv 10.1080/07373937.2016.1187162
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1875406474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904249824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3</originalsourceid><addsrcrecordid>eNp9kc2KFTEQhYMoeB19BCHgQjd9rep0-seVMqgzMCLIuA7pTnI7Y7pzzQ_DfQTf2o533LhwUweK7xyKOoS8RNgj9PAWOtaxgXX7GrDdI_YdtvUjskPO6qpmAI_JrjBVgZ6SZzHeAUCPA9-RX1-80s6uB-oNPcqjDnSxztGo7-VB0-iy2kSFU0FyLFOGZI2drHR01Tn8kXTvw4_4jn7TKk_J-rXEpVnTFKRdi0vJJEcZt80cfD7M9FYe8jTb15EuOs1ePSdPjHRRv3jQC_L908fby6vq5uvn68sPN9XEOkyVHEcAPQDnxnRDoxFG1I1haIZWmb5VnI-ADJra9MjNxLBtu8YYzQdlOEp2Qd6cc4_B_8w6JrHYOGnn5Kp9jgKHzdsMfd1s6Kt_0Dufw7pdJ7Yn8wbapisUP1NT8DEGbcQx2EWGk0AQpSDxtyBRChIPBW2-92efXY0Pi9xe6JRI8uR8MEGuk42C_T_iN41GmRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875406474</pqid></control><display><type>article</type><title>Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Salgado, Mario A. Heredia ; Neto da Silva, Fernando José</creator><creatorcontrib>Salgado, Mario A. Heredia ; Neto da Silva, Fernando José</creatorcontrib><description>Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying processes; however, obtaining a suitable database is a resource consuming task. Based on the Taguchi method, nine experiments were defined to set up a training database and to develop an ANN model. A high Pearson correlation coefficient was verified when comparing the drying kinetic curve generated by the ANN model with the one obtained during the validation experiments.</description><identifier>ISSN: 0737-3937</identifier><identifier>EISSN: 1532-2300</identifier><identifier>DOI: 10.1080/07373937.2016.1187162</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Artificial neural networks ; Cracks ; Drying ; Drying agents ; drying kinetics ; Kinetics ; Learning theory ; Neural networks ; paper mill sewage sludge ; Pulp &amp; paper mills ; Sewage sludge ; Sludge ; Taguchi method ; Taguchi methods ; Training</subject><ispartof>Drying technology, 2017-04, Vol.35 (5), p.534-544</ispartof><rights>2017 Taylor &amp; Francis 2017</rights><rights>2017 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3</citedby><cites>FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3</cites><orcidid>0000-0001-7346-6467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Salgado, Mario A. Heredia</creatorcontrib><creatorcontrib>Neto da Silva, Fernando José</creatorcontrib><title>Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method</title><title>Drying technology</title><description>Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying processes; however, obtaining a suitable database is a resource consuming task. Based on the Taguchi method, nine experiments were defined to set up a training database and to develop an ANN model. A high Pearson correlation coefficient was verified when comparing the drying kinetic curve generated by the ANN model with the one obtained during the validation experiments.</description><subject>Artificial neural networks</subject><subject>Cracks</subject><subject>Drying</subject><subject>Drying agents</subject><subject>drying kinetics</subject><subject>Kinetics</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>paper mill sewage sludge</subject><subject>Pulp &amp; paper mills</subject><subject>Sewage sludge</subject><subject>Sludge</subject><subject>Taguchi method</subject><subject>Taguchi methods</subject><subject>Training</subject><issn>0737-3937</issn><issn>1532-2300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFTEQhYMoeB19BCHgQjd9rep0-seVMqgzMCLIuA7pTnI7Y7pzzQ_DfQTf2o533LhwUweK7xyKOoS8RNgj9PAWOtaxgXX7GrDdI_YdtvUjskPO6qpmAI_JrjBVgZ6SZzHeAUCPA9-RX1-80s6uB-oNPcqjDnSxztGo7-VB0-iy2kSFU0FyLFOGZI2drHR01Tn8kXTvw4_4jn7TKk_J-rXEpVnTFKRdi0vJJEcZt80cfD7M9FYe8jTb15EuOs1ePSdPjHRRv3jQC_L908fby6vq5uvn68sPN9XEOkyVHEcAPQDnxnRDoxFG1I1haIZWmb5VnI-ADJra9MjNxLBtu8YYzQdlOEp2Qd6cc4_B_8w6JrHYOGnn5Kp9jgKHzdsMfd1s6Kt_0Dufw7pdJ7Yn8wbapisUP1NT8DEGbcQx2EWGk0AQpSDxtyBRChIPBW2-92efXY0Pi9xe6JRI8uR8MEGuk42C_T_iN41GmRk</recordid><startdate>20170404</startdate><enddate>20170404</enddate><creator>Salgado, Mario A. Heredia</creator><creator>Neto da Silva, Fernando José</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-7346-6467</orcidid></search><sort><creationdate>20170404</creationdate><title>Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method</title><author>Salgado, Mario A. Heredia ; Neto da Silva, Fernando José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Cracks</topic><topic>Drying</topic><topic>Drying agents</topic><topic>drying kinetics</topic><topic>Kinetics</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>paper mill sewage sludge</topic><topic>Pulp &amp; paper mills</topic><topic>Sewage sludge</topic><topic>Sludge</topic><topic>Taguchi method</topic><topic>Taguchi methods</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salgado, Mario A. Heredia</creatorcontrib><creatorcontrib>Neto da Silva, Fernando José</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Drying technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salgado, Mario A. Heredia</au><au>Neto da Silva, Fernando José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method</atitle><jtitle>Drying technology</jtitle><date>2017-04-04</date><risdate>2017</risdate><volume>35</volume><issue>5</issue><spage>534</spage><epage>544</epage><pages>534-544</pages><issn>0737-3937</issn><eissn>1532-2300</eissn><abstract>Drying of sewage sludge is typically modeled as simultaneous heat and mass transfer phenomena. The capability of conventional models to take into account crust formation, cracks, and shrinking is limited. Artificial neural networks (ANNs) are suitable tools for dynamic representation of drying processes; however, obtaining a suitable database is a resource consuming task. Based on the Taguchi method, nine experiments were defined to set up a training database and to develop an ANN model. A high Pearson correlation coefficient was verified when comparing the drying kinetic curve generated by the ANN model with the one obtained during the validation experiments.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07373937.2016.1187162</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7346-6467</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0737-3937
ispartof Drying technology, 2017-04, Vol.35 (5), p.534-544
issn 0737-3937
1532-2300
language eng
recordid cdi_proquest_journals_1875406474
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Artificial neural networks
Cracks
Drying
Drying agents
drying kinetics
Kinetics
Learning theory
Neural networks
paper mill sewage sludge
Pulp & paper mills
Sewage sludge
Sludge
Taguchi method
Taguchi methods
Training
title Modeling of paper mill sewage sludge drying using artificial neural networks: Reduction of the training database through Taguchi's method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20paper%20mill%20sewage%20sludge%20drying%20using%20artificial%20neural%20networks:%20Reduction%20of%20the%20training%20database%20through%20Taguchi's%20method&rft.jtitle=Drying%20technology&rft.au=Salgado,%20Mario%20A.%20Heredia&rft.date=2017-04-04&rft.volume=35&rft.issue=5&rft.spage=534&rft.epage=544&rft.pages=534-544&rft.issn=0737-3937&rft.eissn=1532-2300&rft_id=info:doi/10.1080/07373937.2016.1187162&rft_dat=%3Cproquest_cross%3E1904249824%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-abb00e9055ff794e10b1e4f31f96df86d55b013042f815fc316674ffe59df51a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1875406474&rft_id=info:pmid/&rfr_iscdi=true