Loading…
Generation and thermally adjustable catalysis of silver nanoparticle immobilized temperature-sensitive nanocomposite
The rise in environmental issues due to the catalytic degradation of pollutants in water has received much attention. In this report, a facile method was developed for the generation of a novel thermosensitive Ag-decorated catalyst, SiO 2 @PNIPAM@Ag (the average particle size is around 540 nm), thro...
Saved in:
Published in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2017-03, Vol.19 (3), p.1, Article 103 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rise in environmental issues due to the catalytic degradation of pollutants in water has received much attention. In this report, a facile method was developed for the generation of a novel thermosensitive Ag-decorated catalyst, SiO
2
@PNIPAM@Ag (the average particle size is around 540 nm), through atom transfer radical polymerization (ATRP) and mild reducing reactions. First, poly(N-isopropylacrylamide) (PNIPAM) was used to create a shell around mercapto-silica spheres that allowed for enhanced catalyst support dispersion into water. Second, through a mild reducing reaction, these Ag nanoparticles (NPs) were then anchored to the surface of SiO
2
@PNIPAM spheres. The resulting catalyst revealed catalytic activity to degrade various nitrobenzenes and organic dyes in an aqueous solution with sodium borohydride (NaBH
4
) at ambient temperature. The catalytic activity can be adjusted in different temperatures through the aggregation or dispersion of Ag catalyst on the polymer supporters, which is due to the thermosensitive PNIPAM shell. The ease of preparation and efficient catalytic activity of the catalyst can make it a promising candidate for the use in degrading organic pollutants for environmental remediation.
Graphical abstract
ᅟ |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-017-3769-y |