Loading…

Local principal differential analysis: Graphical methods for functional data with covariates

We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, tha...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Simulation and computation 2017-03, Vol.46 (3), p.2346-2359
Main Authors: Staniswalis, Joan G., Dodoo, Christopher, Sharma, Anu
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03
cites
container_end_page 2359
container_issue 3
container_start_page 2346
container_title Communications in statistics. Simulation and computation
container_volume 46
creator Staniswalis, Joan G.
Dodoo, Christopher
Sharma, Anu
description We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, that the curves belong to a low-dimensional subspace of a normed linear space. PDA sets out to estimate this linear differential operator from the data and proceeds from there. Our contribution is to explain how subject covariates can be incorporated into a PDA analysis for graphical exploration of patterns in the data.
doi_str_mv 10.1080/03610918.2015.1043387
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1878807596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904241942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_QRhw42bqSzIfiSul-AUFN7oTwmsmoZHppCap0n9vhurGhask7517IYeQcwozCgKugDcUJBUzBrTOo4pz0R6QCa05Kyta0UMyGZlyhI7JSYzvAMBFJSbkbeE19sUmuEG7Tb51zloTzJBcfuCA_S66eF08BNys3IiuTVr5LhbWh8JuB52cH8YcJiy-XFoV2n9icJhMPCVHFvtozn7OKXm9v3uZP5aL54en-e2i1Ew0qeSsbkE0TbeUUjfc4JJBC5XRlLYgDXJtsRNGcqDIAJZ124iuBsvyFmQHfEou972b4D-2Jia1dlGbvsfB-G1UVELFKiorltGLP-i734b8gUyJVghoa9lkqt5TOvgYg7EqC1pj2CkKanSufp2r0bn6cZ5zN_ucG7KeNX750Hcq4a73wQbMiqPi_1d8AwXvh6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878807596</pqid></control><display><type>article</type><title>Local principal differential analysis: Graphical methods for functional data with covariates</title><source>Taylor and Francis Science and Technology Collection</source><creator>Staniswalis, Joan G. ; Dodoo, Christopher ; Sharma, Anu</creator><creatorcontrib>Staniswalis, Joan G. ; Dodoo, Christopher ; Sharma, Anu</creatorcontrib><description>We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, that the curves belong to a low-dimensional subspace of a normed linear space. PDA sets out to estimate this linear differential operator from the data and proceeds from there. Our contribution is to explain how subject covariates can be incorporated into a PDA analysis for graphical exploration of patterns in the data.</description><identifier>ISSN: 0361-0918</identifier><identifier>EISSN: 1532-4141</identifier><identifier>DOI: 10.1080/03610918.2015.1043387</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>CAEP curves ; Collection ; Computer simulation ; Differential operator ; Equivalence ; Estimates ; Exploration ; Low-dimensional approximation ; Operators ; PDA ; Representations</subject><ispartof>Communications in statistics. Simulation and computation, 2017-03, Vol.46 (3), p.2346-2359</ispartof><rights>2017 Taylor &amp; Francis Group, LLC 2017</rights><rights>2017 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Staniswalis, Joan G.</creatorcontrib><creatorcontrib>Dodoo, Christopher</creatorcontrib><creatorcontrib>Sharma, Anu</creatorcontrib><title>Local principal differential analysis: Graphical methods for functional data with covariates</title><title>Communications in statistics. Simulation and computation</title><description>We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, that the curves belong to a low-dimensional subspace of a normed linear space. PDA sets out to estimate this linear differential operator from the data and proceeds from there. Our contribution is to explain how subject covariates can be incorporated into a PDA analysis for graphical exploration of patterns in the data.</description><subject>CAEP curves</subject><subject>Collection</subject><subject>Computer simulation</subject><subject>Differential operator</subject><subject>Equivalence</subject><subject>Estimates</subject><subject>Exploration</subject><subject>Low-dimensional approximation</subject><subject>Operators</subject><subject>PDA</subject><subject>Representations</subject><issn>0361-0918</issn><issn>1532-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs_QRhw42bqSzIfiSul-AUFN7oTwmsmoZHppCap0n9vhurGhask7517IYeQcwozCgKugDcUJBUzBrTOo4pz0R6QCa05Kyta0UMyGZlyhI7JSYzvAMBFJSbkbeE19sUmuEG7Tb51zloTzJBcfuCA_S66eF08BNys3IiuTVr5LhbWh8JuB52cH8YcJiy-XFoV2n9icJhMPCVHFvtozn7OKXm9v3uZP5aL54en-e2i1Ew0qeSsbkE0TbeUUjfc4JJBC5XRlLYgDXJtsRNGcqDIAJZ124iuBsvyFmQHfEou972b4D-2Jia1dlGbvsfB-G1UVELFKiorltGLP-i734b8gUyJVghoa9lkqt5TOvgYg7EqC1pj2CkKanSufp2r0bn6cZ5zN_ucG7KeNX750Hcq4a73wQbMiqPi_1d8AwXvh6s</recordid><startdate>20170316</startdate><enddate>20170316</enddate><creator>Staniswalis, Joan G.</creator><creator>Dodoo, Christopher</creator><creator>Sharma, Anu</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170316</creationdate><title>Local principal differential analysis: Graphical methods for functional data with covariates</title><author>Staniswalis, Joan G. ; Dodoo, Christopher ; Sharma, Anu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CAEP curves</topic><topic>Collection</topic><topic>Computer simulation</topic><topic>Differential operator</topic><topic>Equivalence</topic><topic>Estimates</topic><topic>Exploration</topic><topic>Low-dimensional approximation</topic><topic>Operators</topic><topic>PDA</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staniswalis, Joan G.</creatorcontrib><creatorcontrib>Dodoo, Christopher</creatorcontrib><creatorcontrib>Sharma, Anu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Simulation and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staniswalis, Joan G.</au><au>Dodoo, Christopher</au><au>Sharma, Anu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local principal differential analysis: Graphical methods for functional data with covariates</atitle><jtitle>Communications in statistics. Simulation and computation</jtitle><date>2017-03-16</date><risdate>2017</risdate><volume>46</volume><issue>3</issue><spage>2346</spage><epage>2359</epage><pages>2346-2359</pages><issn>0361-0918</issn><eissn>1532-4141</eissn><abstract>We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, that the curves belong to a low-dimensional subspace of a normed linear space. PDA sets out to estimate this linear differential operator from the data and proceeds from there. Our contribution is to explain how subject covariates can be incorporated into a PDA analysis for graphical exploration of patterns in the data.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610918.2015.1043387</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0918
ispartof Communications in statistics. Simulation and computation, 2017-03, Vol.46 (3), p.2346-2359
issn 0361-0918
1532-4141
language eng
recordid cdi_proquest_journals_1878807596
source Taylor and Francis Science and Technology Collection
subjects CAEP curves
Collection
Computer simulation
Differential operator
Equivalence
Estimates
Exploration
Low-dimensional approximation
Operators
PDA
Representations
title Local principal differential analysis: Graphical methods for functional data with covariates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20principal%20differential%20analysis:%20Graphical%20methods%20for%20functional%20data%20with%20covariates&rft.jtitle=Communications%20in%20statistics.%20Simulation%20and%20computation&rft.au=Staniswalis,%20Joan%20G.&rft.date=2017-03-16&rft.volume=46&rft.issue=3&rft.spage=2346&rft.epage=2359&rft.pages=2346-2359&rft.issn=0361-0918&rft.eissn=1532-4141&rft_id=info:doi/10.1080/03610918.2015.1043387&rft_dat=%3Cproquest_infor%3E1904241942%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1878807596&rft_id=info:pmid/&rfr_iscdi=true