Loading…
Local principal differential analysis: Graphical methods for functional data with covariates
We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, tha...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2017-03, Vol.46 (3), p.2346-2359 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03 |
---|---|
cites | |
container_end_page | 2359 |
container_issue | 3 |
container_start_page | 2346 |
container_title | Communications in statistics. Simulation and computation |
container_volume | 46 |
creator | Staniswalis, Joan G. Dodoo, Christopher Sharma, Anu |
description | We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, that the curves belong to a low-dimensional subspace of a normed linear space. PDA sets out to estimate this linear differential operator from the data and proceeds from there. Our contribution is to explain how subject covariates can be incorporated into a PDA analysis for graphical exploration of patterns in the data. |
doi_str_mv | 10.1080/03610918.2015.1043387 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1878807596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904241942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_QRhw42bqSzIfiSul-AUFN7oTwmsmoZHppCap0n9vhurGhask7517IYeQcwozCgKugDcUJBUzBrTOo4pz0R6QCa05Kyta0UMyGZlyhI7JSYzvAMBFJSbkbeE19sUmuEG7Tb51zloTzJBcfuCA_S66eF08BNys3IiuTVr5LhbWh8JuB52cH8YcJiy-XFoV2n9icJhMPCVHFvtozn7OKXm9v3uZP5aL54en-e2i1Ew0qeSsbkE0TbeUUjfc4JJBC5XRlLYgDXJtsRNGcqDIAJZ124iuBsvyFmQHfEou972b4D-2Jia1dlGbvsfB-G1UVELFKiorltGLP-i734b8gUyJVghoa9lkqt5TOvgYg7EqC1pj2CkKanSufp2r0bn6cZ5zN_ucG7KeNX750Hcq4a73wQbMiqPi_1d8AwXvh6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878807596</pqid></control><display><type>article</type><title>Local principal differential analysis: Graphical methods for functional data with covariates</title><source>Taylor and Francis Science and Technology Collection</source><creator>Staniswalis, Joan G. ; Dodoo, Christopher ; Sharma, Anu</creator><creatorcontrib>Staniswalis, Joan G. ; Dodoo, Christopher ; Sharma, Anu</creatorcontrib><description>We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, that the curves belong to a low-dimensional subspace of a normed linear space. PDA sets out to estimate this linear differential operator from the data and proceeds from there. Our contribution is to explain how subject covariates can be incorporated into a PDA analysis for graphical exploration of patterns in the data.</description><identifier>ISSN: 0361-0918</identifier><identifier>EISSN: 1532-4141</identifier><identifier>DOI: 10.1080/03610918.2015.1043387</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>CAEP curves ; Collection ; Computer simulation ; Differential operator ; Equivalence ; Estimates ; Exploration ; Low-dimensional approximation ; Operators ; PDA ; Representations</subject><ispartof>Communications in statistics. Simulation and computation, 2017-03, Vol.46 (3), p.2346-2359</ispartof><rights>2017 Taylor & Francis Group, LLC 2017</rights><rights>2017 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Staniswalis, Joan G.</creatorcontrib><creatorcontrib>Dodoo, Christopher</creatorcontrib><creatorcontrib>Sharma, Anu</creatorcontrib><title>Local principal differential analysis: Graphical methods for functional data with covariates</title><title>Communications in statistics. Simulation and computation</title><description>We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, that the curves belong to a low-dimensional subspace of a normed linear space. PDA sets out to estimate this linear differential operator from the data and proceeds from there. Our contribution is to explain how subject covariates can be incorporated into a PDA analysis for graphical exploration of patterns in the data.</description><subject>CAEP curves</subject><subject>Collection</subject><subject>Computer simulation</subject><subject>Differential operator</subject><subject>Equivalence</subject><subject>Estimates</subject><subject>Exploration</subject><subject>Low-dimensional approximation</subject><subject>Operators</subject><subject>PDA</subject><subject>Representations</subject><issn>0361-0918</issn><issn>1532-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs_QRhw42bqSzIfiSul-AUFN7oTwmsmoZHppCap0n9vhurGhask7517IYeQcwozCgKugDcUJBUzBrTOo4pz0R6QCa05Kyta0UMyGZlyhI7JSYzvAMBFJSbkbeE19sUmuEG7Tb51zloTzJBcfuCA_S66eF08BNys3IiuTVr5LhbWh8JuB52cH8YcJiy-XFoV2n9icJhMPCVHFvtozn7OKXm9v3uZP5aL54en-e2i1Ew0qeSsbkE0TbeUUjfc4JJBC5XRlLYgDXJtsRNGcqDIAJZ124iuBsvyFmQHfEou972b4D-2Jia1dlGbvsfB-G1UVELFKiorltGLP-i734b8gUyJVghoa9lkqt5TOvgYg7EqC1pj2CkKanSufp2r0bn6cZ5zN_ucG7KeNX750Hcq4a73wQbMiqPi_1d8AwXvh6s</recordid><startdate>20170316</startdate><enddate>20170316</enddate><creator>Staniswalis, Joan G.</creator><creator>Dodoo, Christopher</creator><creator>Sharma, Anu</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170316</creationdate><title>Local principal differential analysis: Graphical methods for functional data with covariates</title><author>Staniswalis, Joan G. ; Dodoo, Christopher ; Sharma, Anu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CAEP curves</topic><topic>Collection</topic><topic>Computer simulation</topic><topic>Differential operator</topic><topic>Equivalence</topic><topic>Estimates</topic><topic>Exploration</topic><topic>Low-dimensional approximation</topic><topic>Operators</topic><topic>PDA</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staniswalis, Joan G.</creatorcontrib><creatorcontrib>Dodoo, Christopher</creatorcontrib><creatorcontrib>Sharma, Anu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Simulation and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staniswalis, Joan G.</au><au>Dodoo, Christopher</au><au>Sharma, Anu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local principal differential analysis: Graphical methods for functional data with covariates</atitle><jtitle>Communications in statistics. Simulation and computation</jtitle><date>2017-03-16</date><risdate>2017</risdate><volume>46</volume><issue>3</issue><spage>2346</spage><epage>2359</epage><pages>2346-2359</pages><issn>0361-0918</issn><eissn>1532-4141</eissn><abstract>We focus on principal differential analysis (PDA) of functional data for obtaining a low-dimensional representation of a collection of curves. PDA assumes there exists a linear differential operator that results in the zero-function when it is applied to each of the data curves, or equivalently, that the curves belong to a low-dimensional subspace of a normed linear space. PDA sets out to estimate this linear differential operator from the data and proceeds from there. Our contribution is to explain how subject covariates can be incorporated into a PDA analysis for graphical exploration of patterns in the data.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03610918.2015.1043387</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0918 |
ispartof | Communications in statistics. Simulation and computation, 2017-03, Vol.46 (3), p.2346-2359 |
issn | 0361-0918 1532-4141 |
language | eng |
recordid | cdi_proquest_journals_1878807596 |
source | Taylor and Francis Science and Technology Collection |
subjects | CAEP curves Collection Computer simulation Differential operator Equivalence Estimates Exploration Low-dimensional approximation Operators PDA Representations |
title | Local principal differential analysis: Graphical methods for functional data with covariates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20principal%20differential%20analysis:%20Graphical%20methods%20for%20functional%20data%20with%20covariates&rft.jtitle=Communications%20in%20statistics.%20Simulation%20and%20computation&rft.au=Staniswalis,%20Joan%20G.&rft.date=2017-03-16&rft.volume=46&rft.issue=3&rft.spage=2346&rft.epage=2359&rft.pages=2346-2359&rft.issn=0361-0918&rft.eissn=1532-4141&rft_id=info:doi/10.1080/03610918.2015.1043387&rft_dat=%3Cproquest_infor%3E1904241942%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-32570866db99c63eab20704ec11709ea3cfad8e9301a200b5768d50f270909d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1878807596&rft_id=info:pmid/&rfr_iscdi=true |