Loading…
Methods for Segmentation of Microarray Image: A Review
Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, seg...
Saved in:
Published in: | International journal of computer science and information security 2016-10, Vol.14 (10), p.690 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 10 |
container_start_page | 690 |
container_title | International journal of computer science and information security |
container_volume | 14 |
creator | Kumar, G Sai Chaitanya Kumar, Reddi Kiran Naidu, G Apparao |
description | Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, segmentation and intensity extraction are the three important steps in microarray image analysis. This paper presents a review of segmentation methods on microarray image. Segmentation can be done using different methods such as Histogram Thresholding, Region growing and merging, Edge detection and Clustering algorithms. Mostly segmentation of microarray image is carried out using clustering algorithms. Clustering algorithms have an advantage that they are not restricted to a particular shape and size for the spots. The qualitative and quantitative analysis shows that segmentation using Fuzzy c-means clustering algorithm provides better segmentation result. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1879097653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321017657</sourcerecordid><originalsourceid>FETCH-proquest_journals_18790976533</originalsourceid><addsrcrecordid>eNpjYuA0tDQx1zU1NTDgYOAtLs4yAAJjQxNTQ1NOBjPf1JKM_JRihbT8IoXg1PTc1LySxJLM_DyF_DQF38zkovzEoqLESgXP3MT0VCsFR4Wg1LLM1HIeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3tDC3NLA0NzM1NiZOFQCN9zTL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879097653</pqid></control><display><type>article</type><title>Methods for Segmentation of Microarray Image: A Review</title><source>EZB Electronic Journals Library</source><creator>Kumar, G Sai Chaitanya ; Kumar, Reddi Kiran ; Naidu, G Apparao</creator><creatorcontrib>Kumar, G Sai Chaitanya ; Kumar, Reddi Kiran ; Naidu, G Apparao</creatorcontrib><description>Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, segmentation and intensity extraction are the three important steps in microarray image analysis. This paper presents a review of segmentation methods on microarray image. Segmentation can be done using different methods such as Histogram Thresholding, Region growing and merging, Edge detection and Clustering algorithms. Mostly segmentation of microarray image is carried out using clustering algorithms. Clustering algorithms have an advantage that they are not restricted to a particular shape and size for the spots. The qualitative and quantitative analysis shows that segmentation using Fuzzy c-means clustering algorithm provides better segmentation result.</description><identifier>EISSN: 1947-5500</identifier><language>eng</language><publisher>Pittsburgh: L J S Publishing</publisher><subject>Algorithms ; Clustering ; Experiments ; Gene expression ; Methods ; Quantitative analysis</subject><ispartof>International journal of computer science and information security, 2016-10, Vol.14 (10), p.690</ispartof><rights>Copyright L J S Publishing Oct 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Kumar, G Sai Chaitanya</creatorcontrib><creatorcontrib>Kumar, Reddi Kiran</creatorcontrib><creatorcontrib>Naidu, G Apparao</creatorcontrib><title>Methods for Segmentation of Microarray Image: A Review</title><title>International journal of computer science and information security</title><description>Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, segmentation and intensity extraction are the three important steps in microarray image analysis. This paper presents a review of segmentation methods on microarray image. Segmentation can be done using different methods such as Histogram Thresholding, Region growing and merging, Edge detection and Clustering algorithms. Mostly segmentation of microarray image is carried out using clustering algorithms. Clustering algorithms have an advantage that they are not restricted to a particular shape and size for the spots. The qualitative and quantitative analysis shows that segmentation using Fuzzy c-means clustering algorithm provides better segmentation result.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Methods</subject><subject>Quantitative analysis</subject><issn>1947-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0tDQx1zU1NTDgYOAtLs4yAAJjQxNTQ1NOBjPf1JKM_JRihbT8IoXg1PTc1LySxJLM_DyF_DQF38zkovzEoqLESgXP3MT0VCsFR4Wg1LLM1HIeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3tDC3NLA0NzM1NiZOFQCN9zTL</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Kumar, G Sai Chaitanya</creator><creator>Kumar, Reddi Kiran</creator><creator>Naidu, G Apparao</creator><general>L J S Publishing</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161001</creationdate><title>Methods for Segmentation of Microarray Image: A Review</title><author>Kumar, G Sai Chaitanya ; Kumar, Reddi Kiran ; Naidu, G Apparao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_18790976533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Methods</topic><topic>Quantitative analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, G Sai Chaitanya</creatorcontrib><creatorcontrib>Kumar, Reddi Kiran</creatorcontrib><creatorcontrib>Naidu, G Apparao</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer science and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, G Sai Chaitanya</au><au>Kumar, Reddi Kiran</au><au>Naidu, G Apparao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods for Segmentation of Microarray Image: A Review</atitle><jtitle>International journal of computer science and information security</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>14</volume><issue>10</issue><spage>690</spage><pages>690-</pages><eissn>1947-5500</eissn><abstract>Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, segmentation and intensity extraction are the three important steps in microarray image analysis. This paper presents a review of segmentation methods on microarray image. Segmentation can be done using different methods such as Histogram Thresholding, Region growing and merging, Edge detection and Clustering algorithms. Mostly segmentation of microarray image is carried out using clustering algorithms. Clustering algorithms have an advantage that they are not restricted to a particular shape and size for the spots. The qualitative and quantitative analysis shows that segmentation using Fuzzy c-means clustering algorithm provides better segmentation result.</abstract><cop>Pittsburgh</cop><pub>L J S Publishing</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1947-5500 |
ispartof | International journal of computer science and information security, 2016-10, Vol.14 (10), p.690 |
issn | 1947-5500 |
language | eng |
recordid | cdi_proquest_journals_1879097653 |
source | EZB Electronic Journals Library |
subjects | Algorithms Clustering Experiments Gene expression Methods Quantitative analysis |
title | Methods for Segmentation of Microarray Image: A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20for%20Segmentation%20of%20Microarray%20Image:%20A%20Review&rft.jtitle=International%20journal%20of%20computer%20science%20and%20information%20security&rft.au=Kumar,%20G%20Sai%20Chaitanya&rft.date=2016-10-01&rft.volume=14&rft.issue=10&rft.spage=690&rft.pages=690-&rft.eissn=1947-5500&rft_id=info:doi/&rft_dat=%3Cproquest%3E4321017657%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_18790976533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879097653&rft_id=info:pmid/&rfr_iscdi=true |