Loading…

Methods for Segmentation of Microarray Image: A Review

Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, seg...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer science and information security 2016-10, Vol.14 (10), p.690
Main Authors: Kumar, G Sai Chaitanya, Kumar, Reddi Kiran, Naidu, G Apparao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 10
container_start_page 690
container_title International journal of computer science and information security
container_volume 14
creator Kumar, G Sai Chaitanya
Kumar, Reddi Kiran
Naidu, G Apparao
description Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, segmentation and intensity extraction are the three important steps in microarray image analysis. This paper presents a review of segmentation methods on microarray image. Segmentation can be done using different methods such as Histogram Thresholding, Region growing and merging, Edge detection and Clustering algorithms. Mostly segmentation of microarray image is carried out using clustering algorithms. Clustering algorithms have an advantage that they are not restricted to a particular shape and size for the spots. The qualitative and quantitative analysis shows that segmentation using Fuzzy c-means clustering algorithm provides better segmentation result.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1879097653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321017657</sourcerecordid><originalsourceid>FETCH-proquest_journals_18790976533</originalsourceid><addsrcrecordid>eNpjYuA0tDQx1zU1NTDgYOAtLs4yAAJjQxNTQ1NOBjPf1JKM_JRihbT8IoXg1PTc1LySxJLM_DyF_DQF38zkovzEoqLESgXP3MT0VCsFR4Wg1LLM1HIeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3tDC3NLA0NzM1NiZOFQCN9zTL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879097653</pqid></control><display><type>article</type><title>Methods for Segmentation of Microarray Image: A Review</title><source>EZB Electronic Journals Library</source><creator>Kumar, G Sai Chaitanya ; Kumar, Reddi Kiran ; Naidu, G Apparao</creator><creatorcontrib>Kumar, G Sai Chaitanya ; Kumar, Reddi Kiran ; Naidu, G Apparao</creatorcontrib><description>Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, segmentation and intensity extraction are the three important steps in microarray image analysis. This paper presents a review of segmentation methods on microarray image. Segmentation can be done using different methods such as Histogram Thresholding, Region growing and merging, Edge detection and Clustering algorithms. Mostly segmentation of microarray image is carried out using clustering algorithms. Clustering algorithms have an advantage that they are not restricted to a particular shape and size for the spots. The qualitative and quantitative analysis shows that segmentation using Fuzzy c-means clustering algorithm provides better segmentation result.</description><identifier>EISSN: 1947-5500</identifier><language>eng</language><publisher>Pittsburgh: L J S Publishing</publisher><subject>Algorithms ; Clustering ; Experiments ; Gene expression ; Methods ; Quantitative analysis</subject><ispartof>International journal of computer science and information security, 2016-10, Vol.14 (10), p.690</ispartof><rights>Copyright L J S Publishing Oct 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Kumar, G Sai Chaitanya</creatorcontrib><creatorcontrib>Kumar, Reddi Kiran</creatorcontrib><creatorcontrib>Naidu, G Apparao</creatorcontrib><title>Methods for Segmentation of Microarray Image: A Review</title><title>International journal of computer science and information security</title><description>Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, segmentation and intensity extraction are the three important steps in microarray image analysis. This paper presents a review of segmentation methods on microarray image. Segmentation can be done using different methods such as Histogram Thresholding, Region growing and merging, Edge detection and Clustering algorithms. Mostly segmentation of microarray image is carried out using clustering algorithms. Clustering algorithms have an advantage that they are not restricted to a particular shape and size for the spots. The qualitative and quantitative analysis shows that segmentation using Fuzzy c-means clustering algorithm provides better segmentation result.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Methods</subject><subject>Quantitative analysis</subject><issn>1947-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0tDQx1zU1NTDgYOAtLs4yAAJjQxNTQ1NOBjPf1JKM_JRihbT8IoXg1PTc1LySxJLM_DyF_DQF38zkovzEoqLESgXP3MT0VCsFR4Wg1LLM1HIeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3tDC3NLA0NzM1NiZOFQCN9zTL</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Kumar, G Sai Chaitanya</creator><creator>Kumar, Reddi Kiran</creator><creator>Naidu, G Apparao</creator><general>L J S Publishing</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161001</creationdate><title>Methods for Segmentation of Microarray Image: A Review</title><author>Kumar, G Sai Chaitanya ; Kumar, Reddi Kiran ; Naidu, G Apparao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_18790976533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Methods</topic><topic>Quantitative analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, G Sai Chaitanya</creatorcontrib><creatorcontrib>Kumar, Reddi Kiran</creatorcontrib><creatorcontrib>Naidu, G Apparao</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer science and information security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, G Sai Chaitanya</au><au>Kumar, Reddi Kiran</au><au>Naidu, G Apparao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods for Segmentation of Microarray Image: A Review</atitle><jtitle>International journal of computer science and information security</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>14</volume><issue>10</issue><spage>690</spage><pages>690-</pages><eissn>1947-5500</eissn><abstract>Microarray technology allows the simultaneous monitoring of thousands of genes in parallel. Based on the gene expression measurements, microarray technology have proven powerful in gene expression profiling for discovering new types of diseases and for predicting the type of a disease. Gridding, segmentation and intensity extraction are the three important steps in microarray image analysis. This paper presents a review of segmentation methods on microarray image. Segmentation can be done using different methods such as Histogram Thresholding, Region growing and merging, Edge detection and Clustering algorithms. Mostly segmentation of microarray image is carried out using clustering algorithms. Clustering algorithms have an advantage that they are not restricted to a particular shape and size for the spots. The qualitative and quantitative analysis shows that segmentation using Fuzzy c-means clustering algorithm provides better segmentation result.</abstract><cop>Pittsburgh</cop><pub>L J S Publishing</pub></addata></record>
fulltext fulltext
identifier EISSN: 1947-5500
ispartof International journal of computer science and information security, 2016-10, Vol.14 (10), p.690
issn 1947-5500
language eng
recordid cdi_proquest_journals_1879097653
source EZB Electronic Journals Library
subjects Algorithms
Clustering
Experiments
Gene expression
Methods
Quantitative analysis
title Methods for Segmentation of Microarray Image: A Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20for%20Segmentation%20of%20Microarray%20Image:%20A%20Review&rft.jtitle=International%20journal%20of%20computer%20science%20and%20information%20security&rft.au=Kumar,%20G%20Sai%20Chaitanya&rft.date=2016-10-01&rft.volume=14&rft.issue=10&rft.spage=690&rft.pages=690-&rft.eissn=1947-5500&rft_id=info:doi/&rft_dat=%3Cproquest%3E4321017657%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_18790976533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879097653&rft_id=info:pmid/&rfr_iscdi=true