Loading…
A new construction of the Clifford-Fourier kernel
In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit e...
Saved in:
Published in: | The Journal of fourier analysis and applications 2017-04, Vol.23 (2), p.462-483 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03 |
container_end_page | 483 |
container_issue | 2 |
container_start_page | 462 |
container_title | The Journal of fourier analysis and applications |
container_volume | 23 |
creator | Constales, Denis De Bie, Hendrik Lian, Pan |
description | In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit expression for the kernel as a finite sum of Bessel functions. We equally obtain the plane wave decomposition and find new integral representations for the kernel in all dimensions. Finally we define and compute the formal generating function for the even dimensional kernels. |
doi_str_mv | 10.1007/s00041-016-9476-8 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880745848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718428831</galeid><sourcerecordid>A718428831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWv0B3gKet85ksx85lmJVKHjR87JJZmtqmtTdFPHfuyUevMgwzGN4bz4eY7cICwTQ9xEACuSAipeFVtycsRlKgVwaiecJgyoTVuUlu4pxB5Cj0GLGcJn19JXVQx_HcKzHduizwWfjO2WrrvV-CA1fD8fQUsg-KPTUXbML77pIN791zt7WD6-rJ755eXxeLTe8FlKOvCy9NoWSBqBy6BFq7ZyosIGUkrRUMi9I1ZXx2qkGCIWTvqygqlRDFYg5u5vmHsLweaQ42l26o08rLRoDupCmMIm1mFhb15Ftez-MwdUpGtq36SvybeovNZoiN0ZgEuAkqMMQYyBvD6Hdu_BtEezJSjtZaZOV9mSlPS3JJ01M3H5L4c8p_4p-AMTddOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880745848</pqid></control><display><type>article</type><title>A new construction of the Clifford-Fourier kernel</title><source>Springer Nature</source><creator>Constales, Denis ; De Bie, Hendrik ; Lian, Pan</creator><creatorcontrib>Constales, Denis ; De Bie, Hendrik ; Lian, Pan</creatorcontrib><description>In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit expression for the kernel as a finite sum of Bessel functions. We equally obtain the plane wave decomposition and find new integral representations for the kernel in all dimensions. Finally we define and compute the formal generating function for the even dimensional kernels.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-016-9476-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Kernels ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2017-04, Vol.23 (2), p.462-483</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03</citedby><cites>FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Constales, Denis</creatorcontrib><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Lian, Pan</creatorcontrib><title>A new construction of the Clifford-Fourier kernel</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit expression for the kernel as a finite sum of Bessel functions. We equally obtain the plane wave decomposition and find new integral representations for the kernel in all dimensions. Finally we define and compute the formal generating function for the even dimensional kernels.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Kernels</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQXUTBWv0B3gKet85ksx85lmJVKHjR87JJZmtqmtTdFPHfuyUevMgwzGN4bz4eY7cICwTQ9xEACuSAipeFVtycsRlKgVwaiecJgyoTVuUlu4pxB5Cj0GLGcJn19JXVQx_HcKzHduizwWfjO2WrrvV-CA1fD8fQUsg-KPTUXbML77pIN791zt7WD6-rJ755eXxeLTe8FlKOvCy9NoWSBqBy6BFq7ZyosIGUkrRUMi9I1ZXx2qkGCIWTvqygqlRDFYg5u5vmHsLweaQ42l26o08rLRoDupCmMIm1mFhb15Ftez-MwdUpGtq36SvybeovNZoiN0ZgEuAkqMMQYyBvD6Hdu_BtEezJSjtZaZOV9mSlPS3JJ01M3H5L4c8p_4p-AMTddOI</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Constales, Denis</creator><creator>De Bie, Hendrik</creator><creator>Lian, Pan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>A new construction of the Clifford-Fourier kernel</title><author>Constales, Denis ; De Bie, Hendrik ; Lian, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Kernels</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constales, Denis</creatorcontrib><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Lian, Pan</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constales, Denis</au><au>De Bie, Hendrik</au><au>Lian, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new construction of the Clifford-Fourier kernel</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>23</volume><issue>2</issue><spage>462</spage><epage>483</epage><pages>462-483</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit expression for the kernel as a finite sum of Bessel functions. We equally obtain the plane wave decomposition and find new integral representations for the kernel in all dimensions. Finally we define and compute the formal generating function for the even dimensional kernels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-016-9476-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-5869 |
ispartof | The Journal of fourier analysis and applications, 2017-04, Vol.23 (2), p.462-483 |
issn | 1069-5869 1531-5851 |
language | eng |
recordid | cdi_proquest_journals_1880745848 |
source | Springer Nature |
subjects | Abstract Harmonic Analysis Approximations and Expansions Fourier Analysis Kernels Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical analysis Partial Differential Equations Signal,Image and Speech Processing |
title | A new construction of the Clifford-Fourier kernel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20construction%20of%20the%20Clifford-Fourier%20kernel&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Constales,%20Denis&rft.date=2017-04-01&rft.volume=23&rft.issue=2&rft.spage=462&rft.epage=483&rft.pages=462-483&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-016-9476-8&rft_dat=%3Cgale_proqu%3EA718428831%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880745848&rft_id=info:pmid/&rft_galeid=A718428831&rfr_iscdi=true |