Loading…

A new construction of the Clifford-Fourier kernel

In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit e...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of fourier analysis and applications 2017-04, Vol.23 (2), p.462-483
Main Authors: Constales, Denis, De Bie, Hendrik, Lian, Pan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03
cites cdi_FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03
container_end_page 483
container_issue 2
container_start_page 462
container_title The Journal of fourier analysis and applications
container_volume 23
creator Constales, Denis
De Bie, Hendrik
Lian, Pan
description In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit expression for the kernel as a finite sum of Bessel functions. We equally obtain the plane wave decomposition and find new integral representations for the kernel in all dimensions. Finally we define and compute the formal generating function for the even dimensional kernels.
doi_str_mv 10.1007/s00041-016-9476-8
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880745848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718428831</galeid><sourcerecordid>A718428831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQXUTBWv0B3gKet85ksx85lmJVKHjR87JJZmtqmtTdFPHfuyUevMgwzGN4bz4eY7cICwTQ9xEACuSAipeFVtycsRlKgVwaiecJgyoTVuUlu4pxB5Cj0GLGcJn19JXVQx_HcKzHduizwWfjO2WrrvV-CA1fD8fQUsg-KPTUXbML77pIN791zt7WD6-rJ755eXxeLTe8FlKOvCy9NoWSBqBy6BFq7ZyosIGUkrRUMi9I1ZXx2qkGCIWTvqygqlRDFYg5u5vmHsLweaQ42l26o08rLRoDupCmMIm1mFhb15Ftez-MwdUpGtq36SvybeovNZoiN0ZgEuAkqMMQYyBvD6Hdu_BtEezJSjtZaZOV9mSlPS3JJ01M3H5L4c8p_4p-AMTddOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880745848</pqid></control><display><type>article</type><title>A new construction of the Clifford-Fourier kernel</title><source>Springer Nature</source><creator>Constales, Denis ; De Bie, Hendrik ; Lian, Pan</creator><creatorcontrib>Constales, Denis ; De Bie, Hendrik ; Lian, Pan</creatorcontrib><description>In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit expression for the kernel as a finite sum of Bessel functions. We equally obtain the plane wave decomposition and find new integral representations for the kernel in all dimensions. Finally we define and compute the formal generating function for the even dimensional kernels.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-016-9476-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Kernels ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2017-04, Vol.23 (2), p.462-483</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03</citedby><cites>FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Constales, Denis</creatorcontrib><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Lian, Pan</creatorcontrib><title>A new construction of the Clifford-Fourier kernel</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit expression for the kernel as a finite sum of Bessel functions. We equally obtain the plane wave decomposition and find new integral representations for the kernel in all dimensions. Finally we define and compute the formal generating function for the even dimensional kernels.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Kernels</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQXUTBWv0B3gKet85ksx85lmJVKHjR87JJZmtqmtTdFPHfuyUevMgwzGN4bz4eY7cICwTQ9xEACuSAipeFVtycsRlKgVwaiecJgyoTVuUlu4pxB5Cj0GLGcJn19JXVQx_HcKzHduizwWfjO2WrrvV-CA1fD8fQUsg-KPTUXbML77pIN791zt7WD6-rJ755eXxeLTe8FlKOvCy9NoWSBqBy6BFq7ZyosIGUkrRUMi9I1ZXx2qkGCIWTvqygqlRDFYg5u5vmHsLweaQ42l26o08rLRoDupCmMIm1mFhb15Ftez-MwdUpGtq36SvybeovNZoiN0ZgEuAkqMMQYyBvD6Hdu_BtEezJSjtZaZOV9mSlPS3JJ01M3H5L4c8p_4p-AMTddOI</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Constales, Denis</creator><creator>De Bie, Hendrik</creator><creator>Lian, Pan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>A new construction of the Clifford-Fourier kernel</title><author>Constales, Denis ; De Bie, Hendrik ; Lian, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Kernels</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constales, Denis</creatorcontrib><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Lian, Pan</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constales, Denis</au><au>De Bie, Hendrik</au><au>Lian, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new construction of the Clifford-Fourier kernel</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>23</volume><issue>2</issue><spage>462</spage><epage>483</epage><pages>462-483</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this paper, we develop a new method based on the Laplace transform to study the Clifford-Fourier transform. First, the kernel of the Clifford-Fourier transform in the Laplace domain is obtained. When the dimension is even, the inverse Laplace transform may be computed and we obtain the explicit expression for the kernel as a finite sum of Bessel functions. We equally obtain the plane wave decomposition and find new integral representations for the kernel in all dimensions. Finally we define and compute the formal generating function for the even dimensional kernels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-016-9476-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2017-04, Vol.23 (2), p.462-483
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_1880745848
source Springer Nature
subjects Abstract Harmonic Analysis
Approximations and Expansions
Fourier Analysis
Kernels
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical analysis
Partial Differential Equations
Signal,Image and Speech Processing
title A new construction of the Clifford-Fourier kernel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20construction%20of%20the%20Clifford-Fourier%20kernel&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Constales,%20Denis&rft.date=2017-04-01&rft.volume=23&rft.issue=2&rft.spage=462&rft.epage=483&rft.pages=462-483&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-016-9476-8&rft_dat=%3Cgale_proqu%3EA718428831%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-99f78465800ba1f10c7aa3b1d0b1d5e756524e6cb8f7a6d0e13a5f9b0bb6deb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880745848&rft_id=info:pmid/&rft_galeid=A718428831&rfr_iscdi=true