Loading…
Noncommutative Principal Bundles Through Twist Deformation
We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain no...
Saved in:
Published in: | Communications in mathematical physics 2017-05, Vol.352 (1), p.287-344 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain noncommutative deformations of the base space as well. Combining the two twist deformations we obtain noncommutative principal bundles with both noncommutative fibers and base space. More in general, the natural isomorphisms proving the equivalence of a closed monoidal category of modules and its twist related one are used to obtain new Hopf–Galois extensions as twists of Hopf–Galois extensions. A sheaf approach is also considered, and examples presented. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-016-2765-x |