Loading…

Classification of motor imagery EEG signals using SVM, k-NN and ANN

Presently, the brain mechanisms are still far from being fully understood, and a considerable amount of neuroscience research is still required to achieve this goal. Brain signals once decoded can be used to control devices and help people in locked-in state to live a better life. The present invest...

Full description

Saved in:
Bibliographic Details
Published in:CSI TRANSACTIONS ON ICT 2016, Vol.4 (2-4), p.135-139
Main Authors: Tyagi, Aruna, Nehra, Vijay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Presently, the brain mechanisms are still far from being fully understood, and a considerable amount of neuroscience research is still required to achieve this goal. Brain signals once decoded can be used to control devices and help people in locked-in state to live a better life. The present investigation deals with the processing and classification of left hand motor imagery and foot motor imagery EEG based brain signals. These signals have a very high dimensionality which possess problem for classifiers. In the present investigation, dimensionality reduction methods PCA and LDA have been implemented and state vector machine, k-nearest neighbour and artificial neural network (ANN) classifiers have been compared for their accuracy and speed of classification. It has been concluded that the combination of LDA and ANN can be treated as a strong candidate for processing and classification of Motor Imagery EEG based brain signals.
ISSN:2277-9078
2277-9086
DOI:10.1007/s40012-016-0091-2