Loading…

A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium

It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric and oceanic optics 2017, Vol.30 (1), p.70-78
Main Authors: Budak, V. P., Zheltov, V. S., Lubenchenko, A. V., Freidlin, K. S., Shagalov, O. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743
cites cdi_FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743
container_end_page 78
container_issue 1
container_start_page 70
container_title Atmospheric and oceanic optics
container_volume 30
creator Budak, V. P.
Zheltov, V. S.
Lubenchenko, A. V.
Freidlin, K. S.
Shagalov, O. V.
description It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The smooth part of the RPS without peaks can be determined in the two-streaming or diffuse approximation. The first iteration of the angular distribution of the radiance significantly refines the solution and allows one to restore the abovementioned angular peaks. The quasi-diffusion approximation—separation of the APS on the basis of the SHM, the determination of the RPS in the diffusion approximation, and the refinement of the solution on the basis of the first iteration—does not depend on the symmetry of the problem and, therefore, can be generalized to the case of an arbitrary geometry of the medium.
doi_str_mv 10.1134/S1024856017010031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880757106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880757106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMdrPpHkvxHxQ8qOclm0zalO5uTbJCv71b60EQT8PM-7038Bi7RrhFzIu7VwRRzGQJqAABcjxhEwEKMsir_JRNDnJ20M_ZRYwbgFJWEidsP-dOx8R1Z7k2Zgg6EY_7Lq0pecN9ovHi-y5rdKQR2a764NO65a4PvBtaCt7oLY--HbbfIO8dD9r6cfkknoLuoqPAfcc1T0NovOUtWT-0l-zM6W2kq585Ze8P92-Lp2z58vi8mC8zk2OZMlLSVA01lVQSLEkptZTWKnKFKUoUBJWyjaoIRdlQlaMRUqAUEoV1QhX5lN0cc3eh_xgopnrTD6EbX9Y4m4GSCqEcKTxSJvQxBnL1LvhWh32NUB8arv80PHrE0RNHtltR-JX8r-kLkbl-Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880757106</pqid></control><display><type>article</type><title>A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium</title><source>Springer Link</source><creator>Budak, V. P. ; Zheltov, V. S. ; Lubenchenko, A. V. ; Freidlin, K. S. ; Shagalov, O. V.</creator><creatorcontrib>Budak, V. P. ; Zheltov, V. S. ; Lubenchenko, A. V. ; Freidlin, K. S. ; Shagalov, O. V.</creatorcontrib><description>It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The smooth part of the RPS without peaks can be determined in the two-streaming or diffuse approximation. The first iteration of the angular distribution of the radiance significantly refines the solution and allows one to restore the abovementioned angular peaks. The quasi-diffusion approximation—separation of the APS on the basis of the SHM, the determination of the RPS in the diffusion approximation, and the refinement of the solution on the basis of the first iteration—does not depend on the symmetry of the problem and, therefore, can be generalized to the case of an arbitrary geometry of the medium.</description><identifier>ISSN: 1024-8560</identifier><identifier>EISSN: 2070-0393</identifier><identifier>DOI: 10.1134/S1024856017010031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alliances ; Angular distribution ; Approximation ; Computer simulation ; Diffusion ; Dye dispersion ; Iterative methods ; Lasers ; Mathematical analysis ; Mathematical models ; Optical Devices ; Optical Models and Databases ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Radiance ; Radiative transfer ; Spherical harmonics</subject><ispartof>Atmospheric and oceanic optics, 2017, Vol.30 (1), p.70-78</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743</citedby><cites>FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Budak, V. P.</creatorcontrib><creatorcontrib>Zheltov, V. S.</creatorcontrib><creatorcontrib>Lubenchenko, A. V.</creatorcontrib><creatorcontrib>Freidlin, K. S.</creatorcontrib><creatorcontrib>Shagalov, O. V.</creatorcontrib><title>A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium</title><title>Atmospheric and oceanic optics</title><addtitle>Atmos Ocean Opt</addtitle><description>It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The smooth part of the RPS without peaks can be determined in the two-streaming or diffuse approximation. The first iteration of the angular distribution of the radiance significantly refines the solution and allows one to restore the abovementioned angular peaks. The quasi-diffusion approximation—separation of the APS on the basis of the SHM, the determination of the RPS in the diffusion approximation, and the refinement of the solution on the basis of the first iteration—does not depend on the symmetry of the problem and, therefore, can be generalized to the case of an arbitrary geometry of the medium.</description><subject>Alliances</subject><subject>Angular distribution</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>Iterative methods</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optical Models and Databases</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiance</subject><subject>Radiative transfer</subject><subject>Spherical harmonics</subject><issn>1024-8560</issn><issn>2070-0393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMdrPpHkvxHxQ8qOclm0zalO5uTbJCv71b60EQT8PM-7038Bi7RrhFzIu7VwRRzGQJqAABcjxhEwEKMsir_JRNDnJ20M_ZRYwbgFJWEidsP-dOx8R1Z7k2Zgg6EY_7Lq0pecN9ovHi-y5rdKQR2a764NO65a4PvBtaCt7oLY--HbbfIO8dD9r6cfkknoLuoqPAfcc1T0NovOUtWT-0l-zM6W2kq585Ze8P92-Lp2z58vi8mC8zk2OZMlLSVA01lVQSLEkptZTWKnKFKUoUBJWyjaoIRdlQlaMRUqAUEoV1QhX5lN0cc3eh_xgopnrTD6EbX9Y4m4GSCqEcKTxSJvQxBnL1LvhWh32NUB8arv80PHrE0RNHtltR-JX8r-kLkbl-Mg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Budak, V. P.</creator><creator>Zheltov, V. S.</creator><creator>Lubenchenko, A. V.</creator><creator>Freidlin, K. S.</creator><creator>Shagalov, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>2017</creationdate><title>A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium</title><author>Budak, V. P. ; Zheltov, V. S. ; Lubenchenko, A. V. ; Freidlin, K. S. ; Shagalov, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alliances</topic><topic>Angular distribution</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>Iterative methods</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optical Models and Databases</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiance</topic><topic>Radiative transfer</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budak, V. P.</creatorcontrib><creatorcontrib>Zheltov, V. S.</creatorcontrib><creatorcontrib>Lubenchenko, A. V.</creatorcontrib><creatorcontrib>Freidlin, K. S.</creatorcontrib><creatorcontrib>Shagalov, O. V.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Atmospheric and oceanic optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budak, V. P.</au><au>Zheltov, V. S.</au><au>Lubenchenko, A. V.</au><au>Freidlin, K. S.</au><au>Shagalov, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium</atitle><jtitle>Atmospheric and oceanic optics</jtitle><stitle>Atmos Ocean Opt</stitle><date>2017</date><risdate>2017</risdate><volume>30</volume><issue>1</issue><spage>70</spage><epage>78</epage><pages>70-78</pages><issn>1024-8560</issn><eissn>2070-0393</eissn><abstract>It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The smooth part of the RPS without peaks can be determined in the two-streaming or diffuse approximation. The first iteration of the angular distribution of the radiance significantly refines the solution and allows one to restore the abovementioned angular peaks. The quasi-diffusion approximation—separation of the APS on the basis of the SHM, the determination of the RPS in the diffusion approximation, and the refinement of the solution on the basis of the first iteration—does not depend on the symmetry of the problem and, therefore, can be generalized to the case of an arbitrary geometry of the medium.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1024856017010031</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1024-8560
ispartof Atmospheric and oceanic optics, 2017, Vol.30 (1), p.70-78
issn 1024-8560
2070-0393
language eng
recordid cdi_proquest_journals_1880757106
source Springer Link
subjects Alliances
Angular distribution
Approximation
Computer simulation
Diffusion
Dye dispersion
Iterative methods
Lasers
Mathematical analysis
Mathematical models
Optical Devices
Optical Models and Databases
Optics
Photonics
Physics
Physics and Astronomy
Radiance
Radiative transfer
Spherical harmonics
title A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20and%20accurate%20synthetic%20iteration-based%20algorithm%20for%20numerical%20simulation%20of%20radiative%20transfer%20in%20a%20turbid%20medium&rft.jtitle=Atmospheric%20and%20oceanic%20optics&rft.au=Budak,%20V.%20P.&rft.date=2017&rft.volume=30&rft.issue=1&rft.spage=70&rft.epage=78&rft.pages=70-78&rft.issn=1024-8560&rft.eissn=2070-0393&rft_id=info:doi/10.1134/S1024856017010031&rft_dat=%3Cproquest_cross%3E1880757106%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880757106&rft_id=info:pmid/&rfr_iscdi=true