Loading…
A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium
It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The...
Saved in:
Published in: | Atmospheric and oceanic optics 2017, Vol.30 (1), p.70-78 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743 |
container_end_page | 78 |
container_issue | 1 |
container_start_page | 70 |
container_title | Atmospheric and oceanic optics |
container_volume | 30 |
creator | Budak, V. P. Zheltov, V. S. Lubenchenko, A. V. Freidlin, K. S. Shagalov, O. V. |
description | It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The smooth part of the RPS without peaks can be determined in the two-streaming or diffuse approximation. The first iteration of the angular distribution of the radiance significantly refines the solution and allows one to restore the abovementioned angular peaks. The quasi-diffusion approximation—separation of the APS on the basis of the SHM, the determination of the RPS in the diffusion approximation, and the refinement of the solution on the basis of the first iteration—does not depend on the symmetry of the problem and, therefore, can be generalized to the case of an arbitrary geometry of the medium. |
doi_str_mv | 10.1134/S1024856017010031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880757106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880757106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMdrPpHkvxHxQ8qOclm0zalO5uTbJCv71b60EQT8PM-7038Bi7RrhFzIu7VwRRzGQJqAABcjxhEwEKMsir_JRNDnJ20M_ZRYwbgFJWEidsP-dOx8R1Z7k2Zgg6EY_7Lq0pecN9ovHi-y5rdKQR2a764NO65a4PvBtaCt7oLY--HbbfIO8dD9r6cfkknoLuoqPAfcc1T0NovOUtWT-0l-zM6W2kq585Ze8P92-Lp2z58vi8mC8zk2OZMlLSVA01lVQSLEkptZTWKnKFKUoUBJWyjaoIRdlQlaMRUqAUEoV1QhX5lN0cc3eh_xgopnrTD6EbX9Y4m4GSCqEcKTxSJvQxBnL1LvhWh32NUB8arv80PHrE0RNHtltR-JX8r-kLkbl-Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880757106</pqid></control><display><type>article</type><title>A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium</title><source>Springer Link</source><creator>Budak, V. P. ; Zheltov, V. S. ; Lubenchenko, A. V. ; Freidlin, K. S. ; Shagalov, O. V.</creator><creatorcontrib>Budak, V. P. ; Zheltov, V. S. ; Lubenchenko, A. V. ; Freidlin, K. S. ; Shagalov, O. V.</creatorcontrib><description>It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The smooth part of the RPS without peaks can be determined in the two-streaming or diffuse approximation. The first iteration of the angular distribution of the radiance significantly refines the solution and allows one to restore the abovementioned angular peaks. The quasi-diffusion approximation—separation of the APS on the basis of the SHM, the determination of the RPS in the diffusion approximation, and the refinement of the solution on the basis of the first iteration—does not depend on the symmetry of the problem and, therefore, can be generalized to the case of an arbitrary geometry of the medium.</description><identifier>ISSN: 1024-8560</identifier><identifier>EISSN: 2070-0393</identifier><identifier>DOI: 10.1134/S1024856017010031</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alliances ; Angular distribution ; Approximation ; Computer simulation ; Diffusion ; Dye dispersion ; Iterative methods ; Lasers ; Mathematical analysis ; Mathematical models ; Optical Devices ; Optical Models and Databases ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Radiance ; Radiative transfer ; Spherical harmonics</subject><ispartof>Atmospheric and oceanic optics, 2017, Vol.30 (1), p.70-78</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743</citedby><cites>FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Budak, V. P.</creatorcontrib><creatorcontrib>Zheltov, V. S.</creatorcontrib><creatorcontrib>Lubenchenko, A. V.</creatorcontrib><creatorcontrib>Freidlin, K. S.</creatorcontrib><creatorcontrib>Shagalov, O. V.</creatorcontrib><title>A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium</title><title>Atmospheric and oceanic optics</title><addtitle>Atmos Ocean Opt</addtitle><description>It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The smooth part of the RPS without peaks can be determined in the two-streaming or diffuse approximation. The first iteration of the angular distribution of the radiance significantly refines the solution and allows one to restore the abovementioned angular peaks. The quasi-diffusion approximation—separation of the APS on the basis of the SHM, the determination of the RPS in the diffusion approximation, and the refinement of the solution on the basis of the first iteration—does not depend on the symmetry of the problem and, therefore, can be generalized to the case of an arbitrary geometry of the medium.</description><subject>Alliances</subject><subject>Angular distribution</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>Iterative methods</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optical Models and Databases</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiance</subject><subject>Radiative transfer</subject><subject>Spherical harmonics</subject><issn>1024-8560</issn><issn>2070-0393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-pMdrPpHkvxHxQ8qOclm0zalO5uTbJCv71b60EQT8PM-7038Bi7RrhFzIu7VwRRzGQJqAABcjxhEwEKMsir_JRNDnJ20M_ZRYwbgFJWEidsP-dOx8R1Z7k2Zgg6EY_7Lq0pecN9ovHi-y5rdKQR2a764NO65a4PvBtaCt7oLY--HbbfIO8dD9r6cfkknoLuoqPAfcc1T0NovOUtWT-0l-zM6W2kq585Ze8P92-Lp2z58vi8mC8zk2OZMlLSVA01lVQSLEkptZTWKnKFKUoUBJWyjaoIRdlQlaMRUqAUEoV1QhX5lN0cc3eh_xgopnrTD6EbX9Y4m4GSCqEcKTxSJvQxBnL1LvhWh32NUB8arv80PHrE0RNHtltR-JX8r-kLkbl-Mg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Budak, V. P.</creator><creator>Zheltov, V. S.</creator><creator>Lubenchenko, A. V.</creator><creator>Freidlin, K. S.</creator><creator>Shagalov, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>2017</creationdate><title>A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium</title><author>Budak, V. P. ; Zheltov, V. S. ; Lubenchenko, A. V. ; Freidlin, K. S. ; Shagalov, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alliances</topic><topic>Angular distribution</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>Iterative methods</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optical Models and Databases</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiance</topic><topic>Radiative transfer</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budak, V. P.</creatorcontrib><creatorcontrib>Zheltov, V. S.</creatorcontrib><creatorcontrib>Lubenchenko, A. V.</creatorcontrib><creatorcontrib>Freidlin, K. S.</creatorcontrib><creatorcontrib>Shagalov, O. V.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Atmospheric and oceanic optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budak, V. P.</au><au>Zheltov, V. S.</au><au>Lubenchenko, A. V.</au><au>Freidlin, K. S.</au><au>Shagalov, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium</atitle><jtitle>Atmospheric and oceanic optics</jtitle><stitle>Atmos Ocean Opt</stitle><date>2017</date><risdate>2017</risdate><volume>30</volume><issue>1</issue><spage>70</spage><epage>78</epage><pages>70-78</pages><issn>1024-8560</issn><eissn>2070-0393</eissn><abstract>It has been shown that the regular part of the solution (RPS) which remains after separating the anisotropic part of the solution (APS) in the small-angle modification of the spherical harmonics method (SHM) is a smooth quasi-isotropic function with individual peaks in the angular distribution. The smooth part of the RPS without peaks can be determined in the two-streaming or diffuse approximation. The first iteration of the angular distribution of the radiance significantly refines the solution and allows one to restore the abovementioned angular peaks. The quasi-diffusion approximation—separation of the APS on the basis of the SHM, the determination of the RPS in the diffusion approximation, and the refinement of the solution on the basis of the first iteration—does not depend on the symmetry of the problem and, therefore, can be generalized to the case of an arbitrary geometry of the medium.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1024856017010031</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-8560 |
ispartof | Atmospheric and oceanic optics, 2017, Vol.30 (1), p.70-78 |
issn | 1024-8560 2070-0393 |
language | eng |
recordid | cdi_proquest_journals_1880757106 |
source | Springer Link |
subjects | Alliances Angular distribution Approximation Computer simulation Diffusion Dye dispersion Iterative methods Lasers Mathematical analysis Mathematical models Optical Devices Optical Models and Databases Optics Photonics Physics Physics and Astronomy Radiance Radiative transfer Spherical harmonics |
title | A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20and%20accurate%20synthetic%20iteration-based%20algorithm%20for%20numerical%20simulation%20of%20radiative%20transfer%20in%20a%20turbid%20medium&rft.jtitle=Atmospheric%20and%20oceanic%20optics&rft.au=Budak,%20V.%20P.&rft.date=2017&rft.volume=30&rft.issue=1&rft.spage=70&rft.epage=78&rft.pages=70-78&rft.issn=1024-8560&rft.eissn=2070-0393&rft_id=info:doi/10.1134/S1024856017010031&rft_dat=%3Cproquest_cross%3E1880757106%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e75c9beb95750de555a55dd7ef4c4612e097db79e126be931c252152512df2743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880757106&rft_id=info:pmid/&rfr_iscdi=true |