Loading…

Prediction of the physical properties of barium titanates using an artificial neural network

Barium titanate is one of the most important ceramics amongst those that are widely used in the electronic industry because of their dielectric properties. These properties are related to the physical properties of the material, namely, the density and the porosity. Thus, the prediction of these pro...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2017-04, Vol.123 (4), p.1-12, Article 274
Main Authors: Al-Jabar, Ahmed Jaafar Abed, Al-dujaili, Mohammed Assi Ahmed, Al-hydary, Imad Ali Disher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Barium titanate is one of the most important ceramics amongst those that are widely used in the electronic industry because of their dielectric properties. These properties are related to the physical properties of the material, namely, the density and the porosity. Thus, the prediction of these properties is highly desirable. The aim of the current work is to develop models that can predict the density, porosity, firing shrinkage, and the green density of barium titanate BaTiO 3 . An artificial neural network was used to fulfill this aim. The modified pechini method was used to prepare barium titanate powders with five different particle size distributions. Eighty samples were prepared using different processing parameters including the pressing rate, pressing pressure, heating rate, sintering temperature, and soaking time. In the artificial neural network (ANN) model, the experimental data set consisted of these 80 samples, 70 samples were used for training the network and 10 samples were employed for testing. A comparison was made between the experimental and the predicted data. Good performance of the ANN model was achieved, in which the results showed that the mean error for the density, porosity, shrinkage, and green density are 0.02, 0.06, 0.04, and 0.002, respectively.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-017-0885-6