Loading…
Canonical algorithms for numerical integration of charged particle motion equations
A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumu...
Saved in:
Published in: | Technical physics 2017-02, Vol.62 (2), p.196-200 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 200 |
container_issue | 2 |
container_start_page | 196 |
container_title | Technical physics |
container_volume | 62 |
creator | Efimov, I. N. Morozov, E. A. Morozova, A. R. |
description | A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics. |
doi_str_mv | 10.1134/S1063784217020074 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880759650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497909451</galeid><sourcerecordid>A497909451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-a39d324f4d383cf9a3ad21799548bd959f2796a6621515d7bff3b52d2d0a4e013</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4Abwuet-adzbEUX1DwUD0vaR7blN2kTbYH_727XQ-CyBxmmO8xHwPAPYILhAh93CDIiagoRgJiCAW9ADMEJSw5w-xynDkpR_wa3OS8hxChivEZ2KxUiMFr1RaqbWLy_a7LhYupCKfOpjPgQ2-bpHofQxFdoXcqNdYUB5V6r1tbdPEM2ePpzMm34MqpNtu7nz4Hn89PH6vXcv3-8rZarktNoOhLRaQhmDpqSEW0k4ooM8SXktFqaySTDgvJFecYMcSM2DpHtgwbbKCiFiIyBw-T7yHF48nmvt7HUwrDyRpVFRRMcgYH1mJiNaq1tQ8u9knpoYztvI7BOj_sl1QKCSVloy2aBDrFnJN19SH5TqWvGsF6fHb959mDBk-aPHBDY9OvKP-KvgHcXIB-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880759650</pqid></control><display><type>article</type><title>Canonical algorithms for numerical integration of charged particle motion equations</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Efimov, I. N. ; Morozov, E. A. ; Morozova, A. R.</creator><creatorcontrib>Efimov, I. N. ; Morozov, E. A. ; Morozova, A. R.</creatorcontrib><description>A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.</description><identifier>ISSN: 1063-7842</identifier><identifier>EISSN: 1090-6525</identifier><identifier>DOI: 10.1134/S1063784217020074</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Analysis ; Charged particles ; Classical and Continuum Physics ; Ion optics ; Magnetic fields ; Numerical integration ; Particle accelerators ; Particle motion ; Phase transitions ; Physics ; Physics and Astronomy ; Theoretical and Mathematical Physics</subject><ispartof>Technical physics, 2017-02, Vol.62 (2), p.196-200</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Efimov, I. N.</creatorcontrib><creatorcontrib>Morozov, E. A.</creatorcontrib><creatorcontrib>Morozova, A. R.</creatorcontrib><title>Canonical algorithms for numerical integration of charged particle motion equations</title><title>Technical physics</title><addtitle>Tech. Phys</addtitle><description>A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Charged particles</subject><subject>Classical and Continuum Physics</subject><subject>Ion optics</subject><subject>Magnetic fields</subject><subject>Numerical integration</subject><subject>Particle accelerators</subject><subject>Particle motion</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical and Mathematical Physics</subject><issn>1063-7842</issn><issn>1090-6525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4Abwuet-adzbEUX1DwUD0vaR7blN2kTbYH_727XQ-CyBxmmO8xHwPAPYILhAh93CDIiagoRgJiCAW9ADMEJSw5w-xynDkpR_wa3OS8hxChivEZ2KxUiMFr1RaqbWLy_a7LhYupCKfOpjPgQ2-bpHofQxFdoXcqNdYUB5V6r1tbdPEM2ePpzMm34MqpNtu7nz4Hn89PH6vXcv3-8rZarktNoOhLRaQhmDpqSEW0k4ooM8SXktFqaySTDgvJFecYMcSM2DpHtgwbbKCiFiIyBw-T7yHF48nmvt7HUwrDyRpVFRRMcgYH1mJiNaq1tQ8u9knpoYztvI7BOj_sl1QKCSVloy2aBDrFnJN19SH5TqWvGsF6fHb959mDBk-aPHBDY9OvKP-KvgHcXIB-</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Efimov, I. N.</creator><creator>Morozov, E. A.</creator><creator>Morozova, A. R.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170201</creationdate><title>Canonical algorithms for numerical integration of charged particle motion equations</title><author>Efimov, I. N. ; Morozov, E. A. ; Morozova, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-a39d324f4d383cf9a3ad21799548bd959f2796a6621515d7bff3b52d2d0a4e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Charged particles</topic><topic>Classical and Continuum Physics</topic><topic>Ion optics</topic><topic>Magnetic fields</topic><topic>Numerical integration</topic><topic>Particle accelerators</topic><topic>Particle motion</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical and Mathematical Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efimov, I. N.</creatorcontrib><creatorcontrib>Morozov, E. A.</creatorcontrib><creatorcontrib>Morozova, A. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efimov, I. N.</au><au>Morozov, E. A.</au><au>Morozova, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical algorithms for numerical integration of charged particle motion equations</atitle><jtitle>Technical physics</jtitle><stitle>Tech. Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>62</volume><issue>2</issue><spage>196</spage><epage>200</epage><pages>196-200</pages><issn>1063-7842</issn><eissn>1090-6525</eissn><abstract>A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063784217020074</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7842 |
ispartof | Technical physics, 2017-02, Vol.62 (2), p.196-200 |
issn | 1063-7842 1090-6525 |
language | eng |
recordid | cdi_proquest_journals_1880759650 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algorithms Analysis Charged particles Classical and Continuum Physics Ion optics Magnetic fields Numerical integration Particle accelerators Particle motion Phase transitions Physics Physics and Astronomy Theoretical and Mathematical Physics |
title | Canonical algorithms for numerical integration of charged particle motion equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20algorithms%20for%20numerical%20integration%20of%20charged%20particle%20motion%20equations&rft.jtitle=Technical%20physics&rft.au=Efimov,%20I.%20N.&rft.date=2017-02-01&rft.volume=62&rft.issue=2&rft.spage=196&rft.epage=200&rft.pages=196-200&rft.issn=1063-7842&rft.eissn=1090-6525&rft_id=info:doi/10.1134/S1063784217020074&rft_dat=%3Cgale_proqu%3EA497909451%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-a39d324f4d383cf9a3ad21799548bd959f2796a6621515d7bff3b52d2d0a4e013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880759650&rft_id=info:pmid/&rft_galeid=A497909451&rfr_iscdi=true |