Loading…

Canonical algorithms for numerical integration of charged particle motion equations

A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumu...

Full description

Saved in:
Bibliographic Details
Published in:Technical physics 2017-02, Vol.62 (2), p.196-200
Main Authors: Efimov, I. N., Morozov, E. A., Morozova, A. R.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 200
container_issue 2
container_start_page 196
container_title Technical physics
container_volume 62
creator Efimov, I. N.
Morozov, E. A.
Morozova, A. R.
description A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.
doi_str_mv 10.1134/S1063784217020074
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880759650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497909451</galeid><sourcerecordid>A497909451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-a39d324f4d383cf9a3ad21799548bd959f2796a6621515d7bff3b52d2d0a4e013</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4Abwuet-adzbEUX1DwUD0vaR7blN2kTbYH_727XQ-CyBxmmO8xHwPAPYILhAh93CDIiagoRgJiCAW9ADMEJSw5w-xynDkpR_wa3OS8hxChivEZ2KxUiMFr1RaqbWLy_a7LhYupCKfOpjPgQ2-bpHofQxFdoXcqNdYUB5V6r1tbdPEM2ePpzMm34MqpNtu7nz4Hn89PH6vXcv3-8rZarktNoOhLRaQhmDpqSEW0k4ooM8SXktFqaySTDgvJFecYMcSM2DpHtgwbbKCiFiIyBw-T7yHF48nmvt7HUwrDyRpVFRRMcgYH1mJiNaq1tQ8u9knpoYztvI7BOj_sl1QKCSVloy2aBDrFnJN19SH5TqWvGsF6fHb959mDBk-aPHBDY9OvKP-KvgHcXIB-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880759650</pqid></control><display><type>article</type><title>Canonical algorithms for numerical integration of charged particle motion equations</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Efimov, I. N. ; Morozov, E. A. ; Morozova, A. R.</creator><creatorcontrib>Efimov, I. N. ; Morozov, E. A. ; Morozova, A. R.</creatorcontrib><description>A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.</description><identifier>ISSN: 1063-7842</identifier><identifier>EISSN: 1090-6525</identifier><identifier>DOI: 10.1134/S1063784217020074</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Analysis ; Charged particles ; Classical and Continuum Physics ; Ion optics ; Magnetic fields ; Numerical integration ; Particle accelerators ; Particle motion ; Phase transitions ; Physics ; Physics and Astronomy ; Theoretical and Mathematical Physics</subject><ispartof>Technical physics, 2017-02, Vol.62 (2), p.196-200</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Efimov, I. N.</creatorcontrib><creatorcontrib>Morozov, E. A.</creatorcontrib><creatorcontrib>Morozova, A. R.</creatorcontrib><title>Canonical algorithms for numerical integration of charged particle motion equations</title><title>Technical physics</title><addtitle>Tech. Phys</addtitle><description>A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Charged particles</subject><subject>Classical and Continuum Physics</subject><subject>Ion optics</subject><subject>Magnetic fields</subject><subject>Numerical integration</subject><subject>Particle accelerators</subject><subject>Particle motion</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical and Mathematical Physics</subject><issn>1063-7842</issn><issn>1090-6525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4Abwuet-adzbEUX1DwUD0vaR7blN2kTbYH_727XQ-CyBxmmO8xHwPAPYILhAh93CDIiagoRgJiCAW9ADMEJSw5w-xynDkpR_wa3OS8hxChivEZ2KxUiMFr1RaqbWLy_a7LhYupCKfOpjPgQ2-bpHofQxFdoXcqNdYUB5V6r1tbdPEM2ePpzMm34MqpNtu7nz4Hn89PH6vXcv3-8rZarktNoOhLRaQhmDpqSEW0k4ooM8SXktFqaySTDgvJFecYMcSM2DpHtgwbbKCiFiIyBw-T7yHF48nmvt7HUwrDyRpVFRRMcgYH1mJiNaq1tQ8u9knpoYztvI7BOj_sl1QKCSVloy2aBDrFnJN19SH5TqWvGsF6fHb959mDBk-aPHBDY9OvKP-KvgHcXIB-</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Efimov, I. N.</creator><creator>Morozov, E. A.</creator><creator>Morozova, A. R.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170201</creationdate><title>Canonical algorithms for numerical integration of charged particle motion equations</title><author>Efimov, I. N. ; Morozov, E. A. ; Morozova, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-a39d324f4d383cf9a3ad21799548bd959f2796a6621515d7bff3b52d2d0a4e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Charged particles</topic><topic>Classical and Continuum Physics</topic><topic>Ion optics</topic><topic>Magnetic fields</topic><topic>Numerical integration</topic><topic>Particle accelerators</topic><topic>Particle motion</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical and Mathematical Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efimov, I. N.</creatorcontrib><creatorcontrib>Morozov, E. A.</creatorcontrib><creatorcontrib>Morozova, A. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efimov, I. N.</au><au>Morozov, E. A.</au><au>Morozova, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical algorithms for numerical integration of charged particle motion equations</atitle><jtitle>Technical physics</jtitle><stitle>Tech. Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>62</volume><issue>2</issue><spage>196</spage><epage>200</epage><pages>196-200</pages><issn>1063-7842</issn><eissn>1090-6525</eissn><abstract>A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063784217020074</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7842
ispartof Technical physics, 2017-02, Vol.62 (2), p.196-200
issn 1063-7842
1090-6525
language eng
recordid cdi_proquest_journals_1880759650
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
Analysis
Charged particles
Classical and Continuum Physics
Ion optics
Magnetic fields
Numerical integration
Particle accelerators
Particle motion
Phase transitions
Physics
Physics and Astronomy
Theoretical and Mathematical Physics
title Canonical algorithms for numerical integration of charged particle motion equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20algorithms%20for%20numerical%20integration%20of%20charged%20particle%20motion%20equations&rft.jtitle=Technical%20physics&rft.au=Efimov,%20I.%20N.&rft.date=2017-02-01&rft.volume=62&rft.issue=2&rft.spage=196&rft.epage=200&rft.pages=196-200&rft.issn=1063-7842&rft.eissn=1090-6525&rft_id=info:doi/10.1134/S1063784217020074&rft_dat=%3Cgale_proqu%3EA497909451%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-a39d324f4d383cf9a3ad21799548bd959f2796a6621515d7bff3b52d2d0a4e013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880759650&rft_id=info:pmid/&rft_galeid=A497909451&rfr_iscdi=true