Loading…

The strategies of advanced cathode composites for lithium-sulfur batteries

Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical application is still hindered by poor cycling lifetime, low Coulombic efficiency, instability...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Technological sciences 2017-02, Vol.60 (2), p.175-185
Main Authors: Zhou, Kuan, Fan, XiaoJing, Wei, XiangFeng, Liu, JieHua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical application is still hindered by poor cycling lifetime, low Coulombic efficiency, instability and small scales. In the last decade, the electrochemical performances of the lithium-sulfur batteries have been improved by developing various novel nanoarchitectures as qualified hosts, and enhancing the sulfur loading with effective encapsulating strategies. The review summarizes the major sulfur cooperating strategies of cathodes based on background and latest progress of the lithium-sulfur batteries. The novel cooperating strategies of physical techniques and chemical synthesis techniques are discussed in detail. Based on the rich chemistry of sulfur, we paid more attention to the highlights of sulfur encapsulating strategies. Furthermore, the critical research directions in the coming future are proposed in the conclusion and outlook section.
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-016-0664-0