Loading…

Electronic transport and band structures of GaAs/AlAs nanostructures superlattices for near-infrared detection

We report here the theoretical calculations of band structures E ( d 1 ), E ( k z , k p ) and effective mass along the growth axis and in the plane of GaAs/Al x Ga 1− x As superlattices, in the envelope function formalism. The effect of valence band offset, well thickness and temperature on the band...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2017, Vol.123 (1), p.1-7, Article 26
Main Authors: Barkissy, Driss, Nafidi, Abdelhakim, Boutramine, Abderrazak, Benchtaber, Nassima, Khalal, Ali, El Gouti, Thami
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-c7a1ada94164c8e3e01a263feb4c7588a27f635219bb058c169f39c7a077403d3
cites cdi_FETCH-LOGICAL-c316t-c7a1ada94164c8e3e01a263feb4c7588a27f635219bb058c169f39c7a077403d3
container_end_page 7
container_issue 1
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 123
creator Barkissy, Driss
Nafidi, Abdelhakim
Boutramine, Abderrazak
Benchtaber, Nassima
Khalal, Ali
El Gouti, Thami
description We report here the theoretical calculations of band structures E ( d 1 ), E ( k z , k p ) and effective mass along the growth axis and in the plane of GaAs/Al x Ga 1− x As superlattices, in the envelope function formalism. The effect of valence band offset, well thickness and temperature on the band structures, has been also studied. Our results show that a transition from indirect to direct band gap in (GaAs) m /(AlAs) 4 takes place between m  = 5 and 6 monolayers at room temperature. Samples (GaAs) 9 /(AlAs) 4 and GaAs( d 1  = 10 nm)/Al 0.15 Ga 0.85 As( d 2  = 15 nm) have a direct band gap of 1.747 eV at room temperature and 1.546 eV at T  = 30 mK, respectively. Their corresponding cutoff wavelengths are located in the near infrared region. We have interpreted the photoluminescence measurements of Ledentsov et al. in GaAs( d 1  = 2.52 nm)/AlAs ( d 1  = 1.16 nm) and the oscillations in the magnetoresistance observed by Kawamura et al. in GaAs/Al 0.15 Ga 0.85 As superlattice. In the later, the existence of discrete quantized levels along the growth direction z indicates extremely low interactions between adjacent wells leading to the use in parallel transport. The position of Fermi level predicts that this sample exhibits n-type conductivity. These results were compared and discussed with the available data in the literature and can be used as a guide for the design of infrared nanostructured detectors.
doi_str_mv 10.1007/s00339-016-0629-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880791467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880791467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c7a1ada94164c8e3e01a263feb4c7588a27f635219bb058c169f39c7a077403d3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPsckmTTbHUuoHFLzoOWSzWdmyJuske7C_3pT10ItzmOEx7wMeQveMPjJK1SpRyrkmlElCZaXJ8QItmOBVQZxeogXVQpGaa3mNblI60DKiqhYo7AbvMsTQO5zBhjRGyNiGFjenlTJMLk_gE44dfrabtNoMm4SDDfHsl6bRw2Bz7l1BXQQcvAXShw4s-Ba3PpeUPoZbdNXZIfm7v7tEH0-79-0L2b89v243e-I4k5k4ZZltrRZMCld77imzleSdb4RT67q2leokX1dMNw1d145J3XFdVFQpQXnLl-hh9h0hfk8-ZXOIE4QSaVhdU6WZkKqw2MxyEFMC35kR-i8LP4ZRc6rVzLWaUqs51WqORVPNmlS44dPDmfO_ol-cBHzf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880791467</pqid></control><display><type>article</type><title>Electronic transport and band structures of GaAs/AlAs nanostructures superlattices for near-infrared detection</title><source>Springer Link</source><creator>Barkissy, Driss ; Nafidi, Abdelhakim ; Boutramine, Abderrazak ; Benchtaber, Nassima ; Khalal, Ali ; El Gouti, Thami</creator><creatorcontrib>Barkissy, Driss ; Nafidi, Abdelhakim ; Boutramine, Abderrazak ; Benchtaber, Nassima ; Khalal, Ali ; El Gouti, Thami</creatorcontrib><description>We report here the theoretical calculations of band structures E ( d 1 ), E ( k z , k p ) and effective mass along the growth axis and in the plane of GaAs/Al x Ga 1− x As superlattices, in the envelope function formalism. The effect of valence band offset, well thickness and temperature on the band structures, has been also studied. Our results show that a transition from indirect to direct band gap in (GaAs) m /(AlAs) 4 takes place between m  = 5 and 6 monolayers at room temperature. Samples (GaAs) 9 /(AlAs) 4 and GaAs( d 1  = 10 nm)/Al 0.15 Ga 0.85 As( d 2  = 15 nm) have a direct band gap of 1.747 eV at room temperature and 1.546 eV at T  = 30 mK, respectively. Their corresponding cutoff wavelengths are located in the near infrared region. We have interpreted the photoluminescence measurements of Ledentsov et al. in GaAs( d 1  = 2.52 nm)/AlAs ( d 1  = 1.16 nm) and the oscillations in the magnetoresistance observed by Kawamura et al. in GaAs/Al 0.15 Ga 0.85 As superlattice. In the later, the existence of discrete quantized levels along the growth direction z indicates extremely low interactions between adjacent wells leading to the use in parallel transport. The position of Fermi level predicts that this sample exhibits n-type conductivity. These results were compared and discussed with the available data in the literature and can be used as a guide for the design of infrared nanostructured detectors.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0629-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advanced Metamaterials and Nanophotonics ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Superlattices ; Surfaces and Interfaces ; Thin Films ; Valence band</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2017, Vol.123 (1), p.1-7, Article 26</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c7a1ada94164c8e3e01a263feb4c7588a27f635219bb058c169f39c7a077403d3</citedby><cites>FETCH-LOGICAL-c316t-c7a1ada94164c8e3e01a263feb4c7588a27f635219bb058c169f39c7a077403d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Barkissy, Driss</creatorcontrib><creatorcontrib>Nafidi, Abdelhakim</creatorcontrib><creatorcontrib>Boutramine, Abderrazak</creatorcontrib><creatorcontrib>Benchtaber, Nassima</creatorcontrib><creatorcontrib>Khalal, Ali</creatorcontrib><creatorcontrib>El Gouti, Thami</creatorcontrib><title>Electronic transport and band structures of GaAs/AlAs nanostructures superlattices for near-infrared detection</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>We report here the theoretical calculations of band structures E ( d 1 ), E ( k z , k p ) and effective mass along the growth axis and in the plane of GaAs/Al x Ga 1− x As superlattices, in the envelope function formalism. The effect of valence band offset, well thickness and temperature on the band structures, has been also studied. Our results show that a transition from indirect to direct band gap in (GaAs) m /(AlAs) 4 takes place between m  = 5 and 6 monolayers at room temperature. Samples (GaAs) 9 /(AlAs) 4 and GaAs( d 1  = 10 nm)/Al 0.15 Ga 0.85 As( d 2  = 15 nm) have a direct band gap of 1.747 eV at room temperature and 1.546 eV at T  = 30 mK, respectively. Their corresponding cutoff wavelengths are located in the near infrared region. We have interpreted the photoluminescence measurements of Ledentsov et al. in GaAs( d 1  = 2.52 nm)/AlAs ( d 1  = 1.16 nm) and the oscillations in the magnetoresistance observed by Kawamura et al. in GaAs/Al 0.15 Ga 0.85 As superlattice. In the later, the existence of discrete quantized levels along the growth direction z indicates extremely low interactions between adjacent wells leading to the use in parallel transport. The position of Fermi level predicts that this sample exhibits n-type conductivity. These results were compared and discussed with the available data in the literature and can be used as a guide for the design of infrared nanostructured detectors.</description><subject>Advanced Metamaterials and Nanophotonics</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Superlattices</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Valence band</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPsckmTTbHUuoHFLzoOWSzWdmyJuske7C_3pT10ItzmOEx7wMeQveMPjJK1SpRyrkmlElCZaXJ8QItmOBVQZxeogXVQpGaa3mNblI60DKiqhYo7AbvMsTQO5zBhjRGyNiGFjenlTJMLk_gE44dfrabtNoMm4SDDfHsl6bRw2Bz7l1BXQQcvAXShw4s-Ba3PpeUPoZbdNXZIfm7v7tEH0-79-0L2b89v243e-I4k5k4ZZltrRZMCld77imzleSdb4RT67q2leokX1dMNw1d145J3XFdVFQpQXnLl-hh9h0hfk8-ZXOIE4QSaVhdU6WZkKqw2MxyEFMC35kR-i8LP4ZRc6rVzLWaUqs51WqORVPNmlS44dPDmfO_ol-cBHzf</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Barkissy, Driss</creator><creator>Nafidi, Abdelhakim</creator><creator>Boutramine, Abderrazak</creator><creator>Benchtaber, Nassima</creator><creator>Khalal, Ali</creator><creator>El Gouti, Thami</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Electronic transport and band structures of GaAs/AlAs nanostructures superlattices for near-infrared detection</title><author>Barkissy, Driss ; Nafidi, Abdelhakim ; Boutramine, Abderrazak ; Benchtaber, Nassima ; Khalal, Ali ; El Gouti, Thami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c7a1ada94164c8e3e01a263feb4c7588a27f635219bb058c169f39c7a077403d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advanced Metamaterials and Nanophotonics</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Superlattices</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barkissy, Driss</creatorcontrib><creatorcontrib>Nafidi, Abdelhakim</creatorcontrib><creatorcontrib>Boutramine, Abderrazak</creatorcontrib><creatorcontrib>Benchtaber, Nassima</creatorcontrib><creatorcontrib>Khalal, Ali</creatorcontrib><creatorcontrib>El Gouti, Thami</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barkissy, Driss</au><au>Nafidi, Abdelhakim</au><au>Boutramine, Abderrazak</au><au>Benchtaber, Nassima</au><au>Khalal, Ali</au><au>El Gouti, Thami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport and band structures of GaAs/AlAs nanostructures superlattices for near-infrared detection</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2017</date><risdate>2017</risdate><volume>123</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>26</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>We report here the theoretical calculations of band structures E ( d 1 ), E ( k z , k p ) and effective mass along the growth axis and in the plane of GaAs/Al x Ga 1− x As superlattices, in the envelope function formalism. The effect of valence band offset, well thickness and temperature on the band structures, has been also studied. Our results show that a transition from indirect to direct band gap in (GaAs) m /(AlAs) 4 takes place between m  = 5 and 6 monolayers at room temperature. Samples (GaAs) 9 /(AlAs) 4 and GaAs( d 1  = 10 nm)/Al 0.15 Ga 0.85 As( d 2  = 15 nm) have a direct band gap of 1.747 eV at room temperature and 1.546 eV at T  = 30 mK, respectively. Their corresponding cutoff wavelengths are located in the near infrared region. We have interpreted the photoluminescence measurements of Ledentsov et al. in GaAs( d 1  = 2.52 nm)/AlAs ( d 1  = 1.16 nm) and the oscillations in the magnetoresistance observed by Kawamura et al. in GaAs/Al 0.15 Ga 0.85 As superlattice. In the later, the existence of discrete quantized levels along the growth direction z indicates extremely low interactions between adjacent wells leading to the use in parallel transport. The position of Fermi level predicts that this sample exhibits n-type conductivity. These results were compared and discussed with the available data in the literature and can be used as a guide for the design of infrared nanostructured detectors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0629-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2017, Vol.123 (1), p.1-7, Article 26
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_1880791467
source Springer Link
subjects Advanced Metamaterials and Nanophotonics
Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Machines
Manufacturing
Materials science
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Superlattices
Surfaces and Interfaces
Thin Films
Valence band
title Electronic transport and band structures of GaAs/AlAs nanostructures superlattices for near-infrared detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20and%20band%20structures%20of%20GaAs/AlAs%20nanostructures%20superlattices%20for%20near-infrared%20detection&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Barkissy,%20Driss&rft.date=2017&rft.volume=123&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=26&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0629-z&rft_dat=%3Cproquest_cross%3E1880791467%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c7a1ada94164c8e3e01a263feb4c7588a27f635219bb058c169f39c7a077403d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880791467&rft_id=info:pmid/&rfr_iscdi=true