Loading…

Complete weight enumerators of some linear codes from quadratic forms

Linear codes with few weights have applications in secrete sharing, authentication codes, association schemes, and strongly regular graphs. In this paper, a construction of q -ary linear codes with few weights employing general quadratic forms over the finite field F q is proposed, where q is an odd...

Full description

Saved in:
Bibliographic Details
Published in:Cryptography and communications 2017-01, Vol.9 (1), p.151-163
Main Authors: Zhang, Dan, Fan, Cuiling, Peng, Daiyuan, Tang, Xiaohu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-14d6cf189c5a4588dfa731e6b71f3d69992725769fc49868daf258ca06eb6a8a3
cites cdi_FETCH-LOGICAL-c382t-14d6cf189c5a4588dfa731e6b71f3d69992725769fc49868daf258ca06eb6a8a3
container_end_page 163
container_issue 1
container_start_page 151
container_title Cryptography and communications
container_volume 9
creator Zhang, Dan
Fan, Cuiling
Peng, Daiyuan
Tang, Xiaohu
description Linear codes with few weights have applications in secrete sharing, authentication codes, association schemes, and strongly regular graphs. In this paper, a construction of q -ary linear codes with few weights employing general quadratic forms over the finite field F q is proposed, where q is an odd prime power. This generalizes some earlier constructions of p -ary linear codes from quadratic bent functions over the prime field F p , where p is an odd prime. The complete weight enumerators of the resultant q -ary linear codes are also determined.
doi_str_mv 10.1007/s12095-016-0190-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880805889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880805889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-14d6cf189c5a4588dfa731e6b71f3d69992725769fc49868daf258ca06eb6a8a3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeA52qSNmlylLK6woIXPYdsOlm7tE03aRHf3pSKePEwzBy-_x_4ELql5J4SUj5EyojiGaEijSKZOkMrqnKRsYLz89-7KC_RVYxHQgRnRb5Cm8p3Qwsj4E9oDh8jhn7qIJjRh4i9w9F3gNumBxOw9TVE7ILv8GkydYIai50PXbxGF860EW5-9hq9P23eqm22e31-qR53mc0lGzNa1MI6KpXlpuBS1s6UOQWxL6nLa6GUYiXjpVDOFkoKWRvHuLSGCNgLI02-RndL7xD8aYI46qOfQp9eaiolkSSVqkTRhbLBxxjA6SE0nQlfmhI929KLLZ1s6dmWnjNsycTE9gcIf5r_DX0Dmz1snw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880805889</pqid></control><display><type>article</type><title>Complete weight enumerators of some linear codes from quadratic forms</title><source>Springer Nature</source><creator>Zhang, Dan ; Fan, Cuiling ; Peng, Daiyuan ; Tang, Xiaohu</creator><creatorcontrib>Zhang, Dan ; Fan, Cuiling ; Peng, Daiyuan ; Tang, Xiaohu</creatorcontrib><description>Linear codes with few weights have applications in secrete sharing, authentication codes, association schemes, and strongly regular graphs. In this paper, a construction of q -ary linear codes with few weights employing general quadratic forms over the finite field F q is proposed, where q is an odd prime power. This generalizes some earlier constructions of p -ary linear codes from quadratic bent functions over the prime field F p , where p is an odd prime. The complete weight enumerators of the resultant q -ary linear codes are also determined.</description><identifier>ISSN: 1936-2447</identifier><identifier>EISSN: 1936-2455</identifier><identifier>DOI: 10.1007/s12095-016-0190-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Binary system ; Circuits ; Codes ; Coding and Information Theory ; Communications Engineering ; Computer Science ; Data Structures and Information Theory ; Information and Communication ; Linear codes ; Mathematics of Computing ; Networks ; Quadratic forms</subject><ispartof>Cryptography and communications, 2017-01, Vol.9 (1), p.151-163</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-14d6cf189c5a4588dfa731e6b71f3d69992725769fc49868daf258ca06eb6a8a3</citedby><cites>FETCH-LOGICAL-c382t-14d6cf189c5a4588dfa731e6b71f3d69992725769fc49868daf258ca06eb6a8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Fan, Cuiling</creatorcontrib><creatorcontrib>Peng, Daiyuan</creatorcontrib><creatorcontrib>Tang, Xiaohu</creatorcontrib><title>Complete weight enumerators of some linear codes from quadratic forms</title><title>Cryptography and communications</title><addtitle>Cryptogr. Commun</addtitle><description>Linear codes with few weights have applications in secrete sharing, authentication codes, association schemes, and strongly regular graphs. In this paper, a construction of q -ary linear codes with few weights employing general quadratic forms over the finite field F q is proposed, where q is an odd prime power. This generalizes some earlier constructions of p -ary linear codes from quadratic bent functions over the prime field F p , where p is an odd prime. The complete weight enumerators of the resultant q -ary linear codes are also determined.</description><subject>Binary system</subject><subject>Circuits</subject><subject>Codes</subject><subject>Coding and Information Theory</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Information and Communication</subject><subject>Linear codes</subject><subject>Mathematics of Computing</subject><subject>Networks</subject><subject>Quadratic forms</subject><issn>1936-2447</issn><issn>1936-2455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK4-gLeA52qSNmlylLK6woIXPYdsOlm7tE03aRHf3pSKePEwzBy-_x_4ELql5J4SUj5EyojiGaEijSKZOkMrqnKRsYLz89-7KC_RVYxHQgRnRb5Cm8p3Qwsj4E9oDh8jhn7qIJjRh4i9w9F3gNumBxOw9TVE7ILv8GkydYIai50PXbxGF860EW5-9hq9P23eqm22e31-qR53mc0lGzNa1MI6KpXlpuBS1s6UOQWxL6nLa6GUYiXjpVDOFkoKWRvHuLSGCNgLI02-RndL7xD8aYI46qOfQp9eaiolkSSVqkTRhbLBxxjA6SE0nQlfmhI929KLLZ1s6dmWnjNsycTE9gcIf5r_DX0Dmz1snw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zhang, Dan</creator><creator>Fan, Cuiling</creator><creator>Peng, Daiyuan</creator><creator>Tang, Xiaohu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170101</creationdate><title>Complete weight enumerators of some linear codes from quadratic forms</title><author>Zhang, Dan ; Fan, Cuiling ; Peng, Daiyuan ; Tang, Xiaohu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-14d6cf189c5a4588dfa731e6b71f3d69992725769fc49868daf258ca06eb6a8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binary system</topic><topic>Circuits</topic><topic>Codes</topic><topic>Coding and Information Theory</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Information and Communication</topic><topic>Linear codes</topic><topic>Mathematics of Computing</topic><topic>Networks</topic><topic>Quadratic forms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dan</creatorcontrib><creatorcontrib>Fan, Cuiling</creatorcontrib><creatorcontrib>Peng, Daiyuan</creatorcontrib><creatorcontrib>Tang, Xiaohu</creatorcontrib><collection>CrossRef</collection><jtitle>Cryptography and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dan</au><au>Fan, Cuiling</au><au>Peng, Daiyuan</au><au>Tang, Xiaohu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete weight enumerators of some linear codes from quadratic forms</atitle><jtitle>Cryptography and communications</jtitle><stitle>Cryptogr. Commun</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>9</volume><issue>1</issue><spage>151</spage><epage>163</epage><pages>151-163</pages><issn>1936-2447</issn><eissn>1936-2455</eissn><abstract>Linear codes with few weights have applications in secrete sharing, authentication codes, association schemes, and strongly regular graphs. In this paper, a construction of q -ary linear codes with few weights employing general quadratic forms over the finite field F q is proposed, where q is an odd prime power. This generalizes some earlier constructions of p -ary linear codes from quadratic bent functions over the prime field F p , where p is an odd prime. The complete weight enumerators of the resultant q -ary linear codes are also determined.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12095-016-0190-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-2447
ispartof Cryptography and communications, 2017-01, Vol.9 (1), p.151-163
issn 1936-2447
1936-2455
language eng
recordid cdi_proquest_journals_1880805889
source Springer Nature
subjects Binary system
Circuits
Codes
Coding and Information Theory
Communications Engineering
Computer Science
Data Structures and Information Theory
Information and Communication
Linear codes
Mathematics of Computing
Networks
Quadratic forms
title Complete weight enumerators of some linear codes from quadratic forms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20weight%20enumerators%20of%20some%20linear%20codes%20from%20quadratic%20forms&rft.jtitle=Cryptography%20and%20communications&rft.au=Zhang,%20Dan&rft.date=2017-01-01&rft.volume=9&rft.issue=1&rft.spage=151&rft.epage=163&rft.pages=151-163&rft.issn=1936-2447&rft.eissn=1936-2455&rft_id=info:doi/10.1007/s12095-016-0190-9&rft_dat=%3Cproquest_cross%3E1880805889%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-14d6cf189c5a4588dfa731e6b71f3d69992725769fc49868daf258ca06eb6a8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880805889&rft_id=info:pmid/&rfr_iscdi=true