Loading…
Robust feature screening for varying coefficient models via quantile partial correlation
This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we e...
Saved in:
Published in: | Metrika 2017, Vol.80 (1), p.17-49 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3 |
container_end_page | 49 |
container_issue | 1 |
container_start_page | 17 |
container_title | Metrika |
container_volume | 80 |
creator | Li, Xiang-Jie Ma, Xue-Jun Zhang, Jing-Xiao |
description | This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we establish the sure screening property for the QPC-SIS, and conduct simulations to examine its finite sample performance. The results of simulation study indicate that the QPC-SIS performs better than other methods like sure independent screening (SIS), sure independent ranking and screening, distance correlation-sure independent screening, conditional correlation sure independence screening and nonparametric independent screening, which shows the validity and rationality of QPC-SIS. |
doi_str_mv | 10.1007/s00184-016-0589-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880805898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880805898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9EkbdL0KItfsCCIwt5Cmk6WLN12N0kX_Pem1IMX5zJzeN4Z5kHoltF7Rmn1ECllqiSUSUKFqok4QwtWFoLUXG7O0YJSLgkrCnGJrmLcZbqSnC_Q5mNoxpiwA5PGADjaAND7fovdEPDJhO9ptgM4562HPuH90EIX8ckbfBxNn3wH-GBC8qbLXAjQmeSH_hpdONNFuPntS_T1_PS5eiXr95e31eOa2KKsEzGuMDVvKG-FpNQIYRsJxlhQrGHAqlZKQ2nNZK6q4a2TjZBNKwqlWMltWyzR3bz3EIbjCDHp3TCGPp_UTCmqJhsqU2ymbBhiDOD0Ifh9_k4zqieBehaos0A9RbTIGT5nYmb7LYQ_m_8N_QCCVXSS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880805898</pqid></control><display><type>article</type><title>Robust feature screening for varying coefficient models via quantile partial correlation</title><source>Springer Link</source><creator>Li, Xiang-Jie ; Ma, Xue-Jun ; Zhang, Jing-Xiao</creator><creatorcontrib>Li, Xiang-Jie ; Ma, Xue-Jun ; Zhang, Jing-Xiao</creatorcontrib><description>This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we establish the sure screening property for the QPC-SIS, and conduct simulations to examine its finite sample performance. The results of simulation study indicate that the QPC-SIS performs better than other methods like sure independent screening (SIS), sure independent ranking and screening, distance correlation-sure independent screening, conditional correlation sure independence screening and nonparametric independent screening, which shows the validity and rationality of QPC-SIS.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-016-0589-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer simulation ; Correlation ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Monte Carlo simulation ; Probability Theory and Stochastic Processes ; Regression analysis ; Screening ; Statistics</subject><ispartof>Metrika, 2017, Vol.80 (1), p.17-49</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3</citedby><cites>FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Xiang-Jie</creatorcontrib><creatorcontrib>Ma, Xue-Jun</creatorcontrib><creatorcontrib>Zhang, Jing-Xiao</creatorcontrib><title>Robust feature screening for varying coefficient models via quantile partial correlation</title><title>Metrika</title><addtitle>Metrika</addtitle><description>This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we establish the sure screening property for the QPC-SIS, and conduct simulations to examine its finite sample performance. The results of simulation study indicate that the QPC-SIS performs better than other methods like sure independent screening (SIS), sure independent ranking and screening, distance correlation-sure independent screening, conditional correlation sure independence screening and nonparametric independent screening, which shows the validity and rationality of QPC-SIS.</description><subject>Computer simulation</subject><subject>Correlation</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression analysis</subject><subject>Screening</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9EkbdL0KItfsCCIwt5Cmk6WLN12N0kX_Pem1IMX5zJzeN4Z5kHoltF7Rmn1ECllqiSUSUKFqok4QwtWFoLUXG7O0YJSLgkrCnGJrmLcZbqSnC_Q5mNoxpiwA5PGADjaAND7fovdEPDJhO9ptgM4562HPuH90EIX8ckbfBxNn3wH-GBC8qbLXAjQmeSH_hpdONNFuPntS_T1_PS5eiXr95e31eOa2KKsEzGuMDVvKG-FpNQIYRsJxlhQrGHAqlZKQ2nNZK6q4a2TjZBNKwqlWMltWyzR3bz3EIbjCDHp3TCGPp_UTCmqJhsqU2ymbBhiDOD0Ifh9_k4zqieBehaos0A9RbTIGT5nYmb7LYQ_m_8N_QCCVXSS</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Li, Xiang-Jie</creator><creator>Ma, Xue-Jun</creator><creator>Zhang, Jing-Xiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Robust feature screening for varying coefficient models via quantile partial correlation</title><author>Li, Xiang-Jie ; Ma, Xue-Jun ; Zhang, Jing-Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Correlation</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression analysis</topic><topic>Screening</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang-Jie</creatorcontrib><creatorcontrib>Ma, Xue-Jun</creatorcontrib><creatorcontrib>Zhang, Jing-Xiao</creatorcontrib><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang-Jie</au><au>Ma, Xue-Jun</au><au>Zhang, Jing-Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust feature screening for varying coefficient models via quantile partial correlation</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2017</date><risdate>2017</risdate><volume>80</volume><issue>1</issue><spage>17</spage><epage>49</epage><pages>17-49</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we establish the sure screening property for the QPC-SIS, and conduct simulations to examine its finite sample performance. The results of simulation study indicate that the QPC-SIS performs better than other methods like sure independent screening (SIS), sure independent ranking and screening, distance correlation-sure independent screening, conditional correlation sure independence screening and nonparametric independent screening, which shows the validity and rationality of QPC-SIS.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00184-016-0589-5</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-1335 |
ispartof | Metrika, 2017, Vol.80 (1), p.17-49 |
issn | 0026-1335 1435-926X |
language | eng |
recordid | cdi_proquest_journals_1880805898 |
source | Springer Link |
subjects | Computer simulation Correlation Economic Theory/Quantitative Economics/Mathematical Methods Mathematics and Statistics Monte Carlo simulation Probability Theory and Stochastic Processes Regression analysis Screening Statistics |
title | Robust feature screening for varying coefficient models via quantile partial correlation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20feature%20screening%20for%20varying%20coefficient%20models%20via%20quantile%20partial%20correlation&rft.jtitle=Metrika&rft.au=Li,%20Xiang-Jie&rft.date=2017&rft.volume=80&rft.issue=1&rft.spage=17&rft.epage=49&rft.pages=17-49&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-016-0589-5&rft_dat=%3Cproquest_cross%3E1880805898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880805898&rft_id=info:pmid/&rfr_iscdi=true |