Loading…

Robust feature screening for varying coefficient models via quantile partial correlation

This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we e...

Full description

Saved in:
Bibliographic Details
Published in:Metrika 2017, Vol.80 (1), p.17-49
Main Authors: Li, Xiang-Jie, Ma, Xue-Jun, Zhang, Jing-Xiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3
cites cdi_FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3
container_end_page 49
container_issue 1
container_start_page 17
container_title Metrika
container_volume 80
creator Li, Xiang-Jie
Ma, Xue-Jun
Zhang, Jing-Xiao
description This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we establish the sure screening property for the QPC-SIS, and conduct simulations to examine its finite sample performance. The results of simulation study indicate that the QPC-SIS performs better than other methods like sure independent screening (SIS), sure independent ranking and screening, distance correlation-sure independent screening, conditional correlation sure independence screening and nonparametric independent screening, which shows the validity and rationality of QPC-SIS.
doi_str_mv 10.1007/s00184-016-0589-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880805898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880805898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9EkbdL0KItfsCCIwt5Cmk6WLN12N0kX_Pem1IMX5zJzeN4Z5kHoltF7Rmn1ECllqiSUSUKFqok4QwtWFoLUXG7O0YJSLgkrCnGJrmLcZbqSnC_Q5mNoxpiwA5PGADjaAND7fovdEPDJhO9ptgM4562HPuH90EIX8ckbfBxNn3wH-GBC8qbLXAjQmeSH_hpdONNFuPntS_T1_PS5eiXr95e31eOa2KKsEzGuMDVvKG-FpNQIYRsJxlhQrGHAqlZKQ2nNZK6q4a2TjZBNKwqlWMltWyzR3bz3EIbjCDHp3TCGPp_UTCmqJhsqU2ymbBhiDOD0Ifh9_k4zqieBehaos0A9RbTIGT5nYmb7LYQ_m_8N_QCCVXSS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880805898</pqid></control><display><type>article</type><title>Robust feature screening for varying coefficient models via quantile partial correlation</title><source>Springer Link</source><creator>Li, Xiang-Jie ; Ma, Xue-Jun ; Zhang, Jing-Xiao</creator><creatorcontrib>Li, Xiang-Jie ; Ma, Xue-Jun ; Zhang, Jing-Xiao</creatorcontrib><description>This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we establish the sure screening property for the QPC-SIS, and conduct simulations to examine its finite sample performance. The results of simulation study indicate that the QPC-SIS performs better than other methods like sure independent screening (SIS), sure independent ranking and screening, distance correlation-sure independent screening, conditional correlation sure independence screening and nonparametric independent screening, which shows the validity and rationality of QPC-SIS.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-016-0589-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer simulation ; Correlation ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Monte Carlo simulation ; Probability Theory and Stochastic Processes ; Regression analysis ; Screening ; Statistics</subject><ispartof>Metrika, 2017, Vol.80 (1), p.17-49</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3</citedby><cites>FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Xiang-Jie</creatorcontrib><creatorcontrib>Ma, Xue-Jun</creatorcontrib><creatorcontrib>Zhang, Jing-Xiao</creatorcontrib><title>Robust feature screening for varying coefficient models via quantile partial correlation</title><title>Metrika</title><addtitle>Metrika</addtitle><description>This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we establish the sure screening property for the QPC-SIS, and conduct simulations to examine its finite sample performance. The results of simulation study indicate that the QPC-SIS performs better than other methods like sure independent screening (SIS), sure independent ranking and screening, distance correlation-sure independent screening, conditional correlation sure independence screening and nonparametric independent screening, which shows the validity and rationality of QPC-SIS.</description><subject>Computer simulation</subject><subject>Correlation</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regression analysis</subject><subject>Screening</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9EkbdL0KItfsCCIwt5Cmk6WLN12N0kX_Pem1IMX5zJzeN4Z5kHoltF7Rmn1ECllqiSUSUKFqok4QwtWFoLUXG7O0YJSLgkrCnGJrmLcZbqSnC_Q5mNoxpiwA5PGADjaAND7fovdEPDJhO9ptgM4562HPuH90EIX8ckbfBxNn3wH-GBC8qbLXAjQmeSH_hpdONNFuPntS_T1_PS5eiXr95e31eOa2KKsEzGuMDVvKG-FpNQIYRsJxlhQrGHAqlZKQ2nNZK6q4a2TjZBNKwqlWMltWyzR3bz3EIbjCDHp3TCGPp_UTCmqJhsqU2ymbBhiDOD0Ifh9_k4zqieBehaos0A9RbTIGT5nYmb7LYQ_m_8N_QCCVXSS</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Li, Xiang-Jie</creator><creator>Ma, Xue-Jun</creator><creator>Zhang, Jing-Xiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Robust feature screening for varying coefficient models via quantile partial correlation</title><author>Li, Xiang-Jie ; Ma, Xue-Jun ; Zhang, Jing-Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Correlation</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regression analysis</topic><topic>Screening</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang-Jie</creatorcontrib><creatorcontrib>Ma, Xue-Jun</creatorcontrib><creatorcontrib>Zhang, Jing-Xiao</creatorcontrib><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang-Jie</au><au>Ma, Xue-Jun</au><au>Zhang, Jing-Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust feature screening for varying coefficient models via quantile partial correlation</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2017</date><risdate>2017</risdate><volume>80</volume><issue>1</issue><spage>17</spage><epage>49</epage><pages>17-49</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>This article is concerned with feature screening for varying coefficient models with ultrahigh-dimensional predictors. We propose a new sure independence screening method based on quantile partial correlation (QPC-SIS), which is quite robust against outliers and heavy-tailed distributions. Then we establish the sure screening property for the QPC-SIS, and conduct simulations to examine its finite sample performance. The results of simulation study indicate that the QPC-SIS performs better than other methods like sure independent screening (SIS), sure independent ranking and screening, distance correlation-sure independent screening, conditional correlation sure independence screening and nonparametric independent screening, which shows the validity and rationality of QPC-SIS.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00184-016-0589-5</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-1335
ispartof Metrika, 2017, Vol.80 (1), p.17-49
issn 0026-1335
1435-926X
language eng
recordid cdi_proquest_journals_1880805898
source Springer Link
subjects Computer simulation
Correlation
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics and Statistics
Monte Carlo simulation
Probability Theory and Stochastic Processes
Regression analysis
Screening
Statistics
title Robust feature screening for varying coefficient models via quantile partial correlation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20feature%20screening%20for%20varying%20coefficient%20models%20via%20quantile%20partial%20correlation&rft.jtitle=Metrika&rft.au=Li,%20Xiang-Jie&rft.date=2017&rft.volume=80&rft.issue=1&rft.spage=17&rft.epage=49&rft.pages=17-49&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-016-0589-5&rft_dat=%3Cproquest_cross%3E1880805898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-af3a92b02d5600a55cb6eaace81b1e17d66a009166667b2df6b56bd5388142cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880805898&rft_id=info:pmid/&rfr_iscdi=true