Loading…

Morita Equivalence for Many-Sorted Enriched Theories

Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriche...

Full description

Saved in:
Bibliographic Details
Published in:Applied categorical structures 2016-12, Vol.24 (6), p.825-844
Main Authors: Dostál, Matĕj, Velebil, Jiří
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353
container_end_page 844
container_issue 6
container_start_page 825
container_title Applied categorical structures
container_volume 24
creator Dostál, Matĕj
Velebil, Jiří
description Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.
doi_str_mv 10.1007/s10485-015-9406-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880838677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880838677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFd_gLeC5-gkbdrkKEv9gF08uJ5Dmk7cLmu7m7RC_71Z6sGLpxmY530HHkJuGdwzgPIhMMiloMAEVTkUdDojCRMlpwqUOCcJKF5SLgW_JFch7ABAFQoSkq973w4mrY5j-2322FlMXe_Ttekm-t77AZu06nxrt3HZbDHSGK7JhTP7gDe_c0E-nqrN8oWu3p5fl48rankhB5orw1ghalEbVRu06CznoBqHKExTG2czlMBNvOeFVCxzQrJccGBljU0msgW5m3sPvj-OGAa960ffxZeaSQkyk0VZRorNlPV9CB6dPvj2y_hJM9AnOXqWo6McfZKjp5jhcyZEtvtE_6f539APr3dnbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880838677</pqid></control><display><type>article</type><title>Morita Equivalence for Many-Sorted Enriched Theories</title><source>Springer Nature</source><creator>Dostál, Matĕj ; Velebil, Jiří</creator><creatorcontrib>Dostál, Matĕj ; Velebil, Jiří</creatorcontrib><description>Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.</description><identifier>ISSN: 0927-2852</identifier><identifier>EISSN: 1572-9095</identifier><identifier>DOI: 10.1007/s10485-015-9406-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Convex and Discrete Geometry ; Enrichment ; Equivalence ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Theory of Computation</subject><ispartof>Applied categorical structures, 2016-12, Vol.24 (6), p.825-844</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dostál, Matĕj</creatorcontrib><creatorcontrib>Velebil, Jiří</creatorcontrib><title>Morita Equivalence for Many-Sorted Enriched Theories</title><title>Applied categorical structures</title><addtitle>Appl Categor Struct</addtitle><description>Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.</description><subject>Convex and Discrete Geometry</subject><subject>Enrichment</subject><subject>Equivalence</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theory of Computation</subject><issn>0927-2852</issn><issn>1572-9095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMoWFd_gLeC5-gkbdrkKEv9gF08uJ5Dmk7cLmu7m7RC_71Z6sGLpxmY530HHkJuGdwzgPIhMMiloMAEVTkUdDojCRMlpwqUOCcJKF5SLgW_JFch7ABAFQoSkq973w4mrY5j-2322FlMXe_Ttekm-t77AZu06nxrt3HZbDHSGK7JhTP7gDe_c0E-nqrN8oWu3p5fl48rankhB5orw1ghalEbVRu06CznoBqHKExTG2czlMBNvOeFVCxzQrJccGBljU0msgW5m3sPvj-OGAa960ffxZeaSQkyk0VZRorNlPV9CB6dPvj2y_hJM9AnOXqWo6McfZKjp5jhcyZEtvtE_6f539APr3dnbw</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Dostál, Matĕj</creator><creator>Velebil, Jiří</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Morita Equivalence for Many-Sorted Enriched Theories</title><author>Dostál, Matĕj ; Velebil, Jiří</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convex and Discrete Geometry</topic><topic>Enrichment</topic><topic>Equivalence</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dostál, Matĕj</creatorcontrib><creatorcontrib>Velebil, Jiří</creatorcontrib><collection>CrossRef</collection><jtitle>Applied categorical structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dostál, Matĕj</au><au>Velebil, Jiří</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morita Equivalence for Many-Sorted Enriched Theories</atitle><jtitle>Applied categorical structures</jtitle><stitle>Appl Categor Struct</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>24</volume><issue>6</issue><spage>825</spage><epage>844</epage><pages>825-844</pages><issn>0927-2852</issn><eissn>1572-9095</eissn><abstract>Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10485-015-9406-y</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-2852
ispartof Applied categorical structures, 2016-12, Vol.24 (6), p.825-844
issn 0927-2852
1572-9095
language eng
recordid cdi_proquest_journals_1880838677
source Springer Nature
subjects Convex and Discrete Geometry
Enrichment
Equivalence
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Theory of Computation
title Morita Equivalence for Many-Sorted Enriched Theories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morita%20Equivalence%20for%20Many-Sorted%20Enriched%20Theories&rft.jtitle=Applied%20categorical%20structures&rft.au=Dost%C3%A1l,%20Mat%C4%95j&rft.date=2016-12-01&rft.volume=24&rft.issue=6&rft.spage=825&rft.epage=844&rft.pages=825-844&rft.issn=0927-2852&rft.eissn=1572-9095&rft_id=info:doi/10.1007/s10485-015-9406-y&rft_dat=%3Cproquest_cross%3E1880838677%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880838677&rft_id=info:pmid/&rfr_iscdi=true