Loading…
Morita Equivalence for Many-Sorted Enriched Theories
Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriche...
Saved in:
Published in: | Applied categorical structures 2016-12, Vol.24 (6), p.825-844 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353 |
container_end_page | 844 |
container_issue | 6 |
container_start_page | 825 |
container_title | Applied categorical structures |
container_volume | 24 |
creator | Dostál, Matĕj Velebil, Jiří |
description | Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case. |
doi_str_mv | 10.1007/s10485-015-9406-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880838677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880838677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFd_gLeC5-gkbdrkKEv9gF08uJ5Dmk7cLmu7m7RC_71Z6sGLpxmY530HHkJuGdwzgPIhMMiloMAEVTkUdDojCRMlpwqUOCcJKF5SLgW_JFch7ABAFQoSkq973w4mrY5j-2322FlMXe_Ttekm-t77AZu06nxrt3HZbDHSGK7JhTP7gDe_c0E-nqrN8oWu3p5fl48rankhB5orw1ghalEbVRu06CznoBqHKExTG2czlMBNvOeFVCxzQrJccGBljU0msgW5m3sPvj-OGAa960ffxZeaSQkyk0VZRorNlPV9CB6dPvj2y_hJM9AnOXqWo6McfZKjp5jhcyZEtvtE_6f539APr3dnbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880838677</pqid></control><display><type>article</type><title>Morita Equivalence for Many-Sorted Enriched Theories</title><source>Springer Nature</source><creator>Dostál, Matĕj ; Velebil, Jiří</creator><creatorcontrib>Dostál, Matĕj ; Velebil, Jiří</creatorcontrib><description>Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.</description><identifier>ISSN: 0927-2852</identifier><identifier>EISSN: 1572-9095</identifier><identifier>DOI: 10.1007/s10485-015-9406-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Convex and Discrete Geometry ; Enrichment ; Equivalence ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Theory of Computation</subject><ispartof>Applied categorical structures, 2016-12, Vol.24 (6), p.825-844</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dostál, Matĕj</creatorcontrib><creatorcontrib>Velebil, Jiří</creatorcontrib><title>Morita Equivalence for Many-Sorted Enriched Theories</title><title>Applied categorical structures</title><addtitle>Appl Categor Struct</addtitle><description>Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.</description><subject>Convex and Discrete Geometry</subject><subject>Enrichment</subject><subject>Equivalence</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theory of Computation</subject><issn>0927-2852</issn><issn>1572-9095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMoWFd_gLeC5-gkbdrkKEv9gF08uJ5Dmk7cLmu7m7RC_71Z6sGLpxmY530HHkJuGdwzgPIhMMiloMAEVTkUdDojCRMlpwqUOCcJKF5SLgW_JFch7ABAFQoSkq973w4mrY5j-2322FlMXe_Ttekm-t77AZu06nxrt3HZbDHSGK7JhTP7gDe_c0E-nqrN8oWu3p5fl48rankhB5orw1ghalEbVRu06CznoBqHKExTG2czlMBNvOeFVCxzQrJccGBljU0msgW5m3sPvj-OGAa960ffxZeaSQkyk0VZRorNlPV9CB6dPvj2y_hJM9AnOXqWo6McfZKjp5jhcyZEtvtE_6f539APr3dnbw</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Dostál, Matĕj</creator><creator>Velebil, Jiří</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Morita Equivalence for Many-Sorted Enriched Theories</title><author>Dostál, Matĕj ; Velebil, Jiří</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convex and Discrete Geometry</topic><topic>Enrichment</topic><topic>Equivalence</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dostál, Matĕj</creatorcontrib><creatorcontrib>Velebil, Jiří</creatorcontrib><collection>CrossRef</collection><jtitle>Applied categorical structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dostál, Matĕj</au><au>Velebil, Jiří</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morita Equivalence for Many-Sorted Enriched Theories</atitle><jtitle>Applied categorical structures</jtitle><stitle>Appl Categor Struct</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>24</volume><issue>6</issue><spage>825</spage><epage>844</epage><pages>825-844</pages><issn>0927-2852</issn><eissn>1572-9095</eissn><abstract>Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adámek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10485-015-9406-y</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-2852 |
ispartof | Applied categorical structures, 2016-12, Vol.24 (6), p.825-844 |
issn | 0927-2852 1572-9095 |
language | eng |
recordid | cdi_proquest_journals_1880838677 |
source | Springer Nature |
subjects | Convex and Discrete Geometry Enrichment Equivalence Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Theory of Computation |
title | Morita Equivalence for Many-Sorted Enriched Theories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morita%20Equivalence%20for%20Many-Sorted%20Enriched%20Theories&rft.jtitle=Applied%20categorical%20structures&rft.au=Dost%C3%A1l,%20Mat%C4%95j&rft.date=2016-12-01&rft.volume=24&rft.issue=6&rft.spage=825&rft.epage=844&rft.pages=825-844&rft.issn=0927-2852&rft.eissn=1572-9095&rft_id=info:doi/10.1007/s10485-015-9406-y&rft_dat=%3Cproquest_cross%3E1880838677%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-49a1165b5ba9baecefc2209dfee5adbafc3e802a5ba468913f581452017bed353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880838677&rft_id=info:pmid/&rfr_iscdi=true |